ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent experiments have shown that photoluminescence decay of silicon nanocrystals can be described by the stretched exponential function. We show here that the associated decay probability rate is the one-sided Levy stable distribution which describ es well the experimental data. The relevance of these conclusions to the underlying stochastic processes is discussed in terms of Levy processes.
Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pur. Appl. Math. 14, 187 (1961)].
We study the higher-order heat-type equation with first time and M-th spatial partial derivatives, M = 2, 3, ... . We demonstrate that its exact solutions for M even can be constructed with the help of signed Levy stable functions. For M odd the same role is played by a special generalization of Airy Ai function that we introduce and study. This permits one to generate the exact and explicit heat kernels pertaining to these equations. We examine analytically and graphically the spacial and temporary evolution of particular solutions for simple initial conditions.
We consider an algebraic formulation of Quantum Theory and develop a combinatorial model of the Heisenberg-Weyl algebra structure. It is shown that by lifting this structure to the richer algebra of graph operator calculus, we gain a simple interpret ation involving, for example, the natural composition of graphs. This provides a deeper insight into the algebraic structure of Quantum Theory and sheds light on the intrinsic combinatorial underpinning of its abstract formalism.
We consider discrete spectra of bound states for non-relativistic motion in attractive potentials V_{sigma}(x) = -|V_{0}| |x|^{-sigma}, 0 < sigma leq 2. For these potentials the quasiclassical approximation for n -> infty predicts quantized energy le vels e_{sigma}(n) of a bounded spectrum varying as e_{sigma}(n) ~ -n^{-2sigma/(2-sigma)}. We construct collective quantum states using the set of wavefunctions of the discrete spectrum taking into account this asymptotic behaviour. We give examples of states that are normalizable and satisfy the resolution of unity, using explicit positive functions. These are coherent states in the sense of Klauder and their completeness is achieved via exact solutions of Hausdorff moment problems, obtained by combining Laplace and Mellin transform methods. For sigma in the range 0<sigmaleq 2/3 we present exact implementations of such states for the parametrization sigma = 2(k-l)/(3k-l), with k and l positive integers satisfying k>l.
This paper provides motivation as well as a method of construction for Hopf algebras, starting from an associative algebra. The dualization technique involved relies heavily on the use of Sweedlers dual.
60 - P. Blasiak 2009
The Heisenberg-Weyl algebra, which underlies virtually all physical representations of Quantum Theory, is considered from the combinatorial point of view. We provide a concrete model of the algebra in terms of paths on a lattice with some decompositi on rules. We also discuss the rook problem on the associated Ferrers board; this is related to the calculus in the normally ordered basis. From this starting point we explore a combinatorial underpinning of the Heisenberg-Weyl algebra, which offers novel perspectives, methods and applications.
92 - K. A. Penson 2009
We consider properties of the operators D(r,M)=a^r(a^dag a)^M (which we call generalized Laguerre-type derivatives), with r=1,2,..., M=0,1,..., where a and a^dag are boson annihilation and creation operators respectively, satisfying [a,a^dag]=1. We o btain explicit formulas for the normally ordered form of arbitrary Taylor-expandable functions of D(r,M) with the help of an operator relation which generalizes the Dobinski formula. Coherent state expectation values of certain operator functions of D(r,M) turn out to be generating functions of combinatorial numbers. In many cases the corresponding combinatorial structures can be explicitly identified.
123 - G. H. E. Duchamp 2008
This tutorial is intended to give an accessible introduction to Hopf algebras. The mathematical context is that of representation theory, and we also illustrate the structures with examples taken from combinatorics and quantum physics, showing that i n this latter case the axioms of Hopf algebra arise naturally. The text contains many exercises, some taken from physics, aimed at expanding and exemplifying the concepts introduced.
150 - P. Blasiak 2008
We show that the formalism of hybrid polynomials, interpolating between Hermite and Laguerre polynomials, is very useful in the study of Motzkin numbers and central trinomial coefficients. These sequences are identified as special values of hybrid po lynomials, a fact which we use to derive their generalized forms and new identities satisfied by them.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا