ﻻ يوجد ملخص باللغة العربية
We study the higher-order heat-type equation with first time and M-th spatial partial derivatives, M = 2, 3, ... . We demonstrate that its exact solutions for M even can be constructed with the help of signed Levy stable functions. For M odd the same role is played by a special generalization of Airy Ai function that we introduce and study. This permits one to generate the exact and explicit heat kernels pertaining to these equations. We examine analytically and graphically the spacial and temporary evolution of particular solutions for simple initial conditions.
Intermittent stochastic processes appear in a wide field, such as chemistry, biology, ecology, and computer science. This paper builds up the theory of intermittent continuous time random walk (CTRW) and L{e}vy walk, in which the particles are stocha
Recent experiments have shown that photoluminescence decay of silicon nanocrystals can be described by the stretched exponential function. We show here that the associated decay probability rate is the one-sided Levy stable distribution which describ
Recent experiments (G. Ariel, et al., Nature Comm. 6, 8396 (2015)) revealed an intriguing behavior of swarming bacteria: they fundamentally change their collective motion from simple diffusion into a superdiffusive L{e}vy walk dynamics. We introduce
L{e}vy walk is a popular and more `physical model to describe the phenomena of superdiffusion, because of its finite velocity. The movements of particles are under the influences of external potentials almost at anytime and anywhere. In this paper, w
Levy walk process is one of the most effective models to describe superdiffusion, which underlies some important movement patterns and has been widely observed in the micro and macro dynamics. From the perspective of random walk theory, here we inves