ﻻ يوجد ملخص باللغة العربية
The Heisenberg-Weyl algebra, which underlies virtually all physical representations of Quantum Theory, is considered from the combinatorial point of view. We provide a concrete model of the algebra in terms of paths on a lattice with some decomposition rules. We also discuss the rook problem on the associated Ferrers board; this is related to the calculus in the normally ordered basis. From this starting point we explore a combinatorial underpinning of the Heisenberg-Weyl algebra, which offers novel perspectives, methods and applications.
We consider an algebraic formulation of Quantum Theory and develop a combinatorial model of the Heisenberg-Weyl algebra structure. It is shown that by lifting this structure to the richer algebra of graph operator calculus, we gain a simple interpret
A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl-Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separabl
The notion of emph{string attractor} has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word $w=w[1]w[2]cdots w[n]$ i
This paper studies combinatorial properties of the complex of planar injective words, a chain complex of modules over the Temperley-Lieb algebra that arose in our work on homological stability. Despite being a linear rather than a discrete object, ou
We present a list of formulae useful for Weyl-Heisenberg integral quantizations, with arbitrary weight, of functions or distributions on the plane. Most of these formulae are known, others are original. The list encompasses particular cases like Weyl