ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - S. Salvadori 2013
We estimate the potential contribution of M < 10^9 Msun dwarf galaxies to the reionization and early metal-enrichment of the Milky Way environment, or circum-Galactic Medium. Our approach is to use the observed properties of ancient stars (> 12 Gyr o ld) measured in nearby dwarf galaxies to characterize the star-formation at high-z. We use a merger-tree model for the build-up of the Milky Way, which self-consistently accounts for feedback processes, and which is calibrated to match the present-day properties of the Galaxy and its dwarf satellites. We show that the high-z analogues of nearby dwarf galaxies can produce the bulk of ionizing radiation (>80%) required to reionize the Milky Way environment. Our fiducial model shows that the gaseous environment can be 50% reionized at z ~ 8 by galaxies with 10^7 Msun < M < 10^8 Msun. At later times, radiative feedback stops the star-formation in these small systems, and reionization is completed by more massive dwarf galaxies by z_rei = 6.4pm 0.5. The metals ejected by supernova-driven outflows from M < 10^9 Msun dwarf galaxies almost uniformly fill the Milky Way environment by z ~ 5, enriching it to Z ~ 2 10^-2 Zsun. At z ~ 2 these early metals are still found to represent ~ 50% of the total mass of heavy elements in the circum-Galactic Medium.
Intergalactic scintillation of distant quasars is sensitive to free electrons and therefore complements Ly$alpha$ absorption line experiments probing the neutral intergalactic medium (IGM). We present a new scheme to compute IGM refractive scintillat ion effects on distant sources in combination with Adaptive Mesh Refinement cosmological simulations. First we validate our model by reproducing the well-known interstellar scintillation (ISS) of Galactic sources. The simulated cosmic density field is then used to infer the statistical properties of intergalactic scintillation. Contrary to previous claims, we find that the scattering measure of the simulated IGM at $z<2$ is $langle mbox{SM}_{equ}rangle=3.879$, i.e. almost 40 times larger than for the usually assumed smooth IGM. This yield an average modulation index ranging from 0.01 ($ u_s=5$ GHz) up to 0.2 ($ u_s=50$ GHz); above $ u_{s}gsim30$ GHz the IGM contribution dominates over ISS modulation. We compare our model with data from a $0.3leq zleq 2$ quasar sample observed at $ u_{obs}=8.4$ GHz. For this high frequency ($10.92leq u_s leq 25.2$), high galactic latitude sample ISS is negligible, and IGM scintillation can reproduce the observed modulation with a 4% accuracy, without invoking intrinsic source variability. We conclude by discussing the possibility of using IGM scintillation as a tool to pinpoint the presence of intervening high-$z$ groups/clusters along the line of sight, thus making it a probe suitably complementing Sunyaev-Zeldovich data recently obtained by textit{Planck}.
It has been recently suggested that supermassive black holes at z = 5-6 might form from super-fast (dot M > 10^4 Msun/yr) accretion occurring in unstable, massive nuclear gas disks produced by mergers of Milky-Way size galaxies. Interestingly, such m echanism is claimed to work also for gas enriched to solar metallicity. These results are based on an idealized polytropic equation of state assumption, essentially preventing the gas from cooling. We show that under more realistic conditions, the disk rapidly (< 1 yr) cools, the accretion rate drops, and the central core can grow only to approx 100 Msun. In addition, most of the disk becomes gravitationally unstable in about 100 yr, further quenching the accretion. We conclude that this scenario encounters a number of difficulties that possibly make it untenable.
86 - S. Baek , A. Ferrara , B. Semelin 2012
We present a novel method to investigate cosmic reionization, using joint spectral information on high redshift Lyman Alpha Emitters (LAE) and quasars (QSOs). Although LAEs have been proposed as reionization probes, their use is hampered by the fact their Ly{alpha} line is damped not only by intergalactic HI but also internally by dust. Our method allows to overcome such degeneracy. First, we carefully calibrate a reionization simulation with QSO absorption line experiments. Then we identify LAEs in two simulation boxes at z=5.7 and z=6.6 and we build synthetic images/spectra of a prototypical LAE. At redshift 5.7, we find that the Ly{alpha} transmissivity (T_LAE) ~ 0.25, almost independent of the halo mass. This constancy arises from the conspiracy of two effects: (i) the intrinsic Ly{alpha} line width and (ii) the infall peculiar velocity. At higher redshift, z=6.6, where the transmissivity is instead largely set by the local HI abundance and LAE transmissivity consequently increases with halo mass from 0.15 to 0.3. Although outflows are present, they are efficiently pressure-confined by infall in a small region around the LAE; hence they only marginally affect transmissivity. Finally, we cast LOS originating from background QSOs passing through foreground LAEs at different impact parameters, and compute the quasar transmissivity (T_QSO). At smaller impact parameters, d < 1 cMpc, a positive correlation between T_QSO and halo mass is found at z = 5.7, which tends to become less pronounced (i.e. flatter) at larger distances. By cross-correlating T_LAE and T_QSO, we can obtain a HI density estimate unaffected by dust. At z= 5.7, the cross-correlation is relatively weak,whereas at z = 6.6 we find a clear positive correlation. We conclude by briefly discussing the perspectives for the application of the method to existing and forthcoming data.
With the aim of determining if Milky Way (MW) progenitors could be identified as high redshift Lyman Alpha Emitters (LAEs) we have derived the intrinsic properties of z ~ 5.7 MW progenitors, which are then used to compute their observed Lyman-alpha l uminosity, L_alpha, and equivalent width, EW. MW progenitors visible as LAEs are selected according to the canonical observational criterion, L_alpha > 10^42 erg/s and EW > 20 A. Progenitors of MW-like galaxies have L_alpha = 10^(39-43.25) erg/s, making some of them visible as LAEs. In any single MW merger tree realization, typically only 1 (out of ~ 50) progenitor meets the LAE selection criterion, but the probability to have at least one LAE is very high, P = 68%. The identified LAE stars have ages, t_* ~ 150-400 Myr at z ~ 5.7 with the exception of five small progenitors with t_* < 5 Myr and large EW = 60-130 A. LAE MW progenitors provide > 10% of the halo very metal-poor stars [Fe/H] < -2, thus establishing a potentially fruitful link between high-z galaxies and the Local Universe.
Recent observations have gathered a considerable sample of high redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to stan dard physical processes, a detailed treatment of the Pop III-Pop II transition in early objects. The simulated high-z galaxies match remarkably well the amplitude and slope of the observed LF in the redshift range 5<z<10. The LF shifts towards fainter luminosities with increasing redshift, while its faint-end slope keeps an almost constant value, alpha ~-2. The stellar populations of high-z galaxies have ages of 100-300 (40-130) Myr at z=5 (z=7-8), implying an early (z>9.4) start of their star formation activity; the specific star formation rate is almost independent of galactic stellar mass. These objects are enriched rapidly with metals and galaxies identified by HST/WFC3 (M_UV < -18) show metallicities ~0.1 Zsun even at z=7-8. Most of the simulated galaxies at z~7 (noticeably the smallest ones) are virtually dust-free, and none of them has an extinction larger than E(B-V) = 0.01. The bulk (50%) of the ionizing photons is produced by objects populating the faint-end of the LF (M_UV < -16), which JWST will resolve up to z=7.3. PopIII stars continue to form essentially at all redshifts; however, at z=6 (z=10) the contribution of Pop III stars to the total galactic luminosity is always less than 5% for M_UV < -17 (M_UV < -16). The typical high-z galaxies closely resemble the GRB host galaxy population observed at lower redshifts, strongly encouraging the use of GRBs to detect the first galaxies.
We propose the Apparent Shrinking Criterion (ASC) to interpret the spatial extent, R_w, of transmitted flux windows in the absorption spectra of high-z quasars. The ASC can discriminate between the two regimes in which R_w corresponds either to the p hysical size, R_HII, of the quasar HII region, or to the distance, R^{max}_w, at which the transmitted flux drops to =0.1 and a Gunn-Peterson (GP) trough appears. In the first case (HR regime), one can determine the IGM mean HI fraction, x_HI; in the second (PR regime), the value of R_w allows to measure the local photoionization rate and the local enhancement of the photoionization rate, Gamma_G, due to nearby/intervening galaxies. The ASC has been tested against radiative transfer+SPH numerical simulations, and applied to 15 high-z (z>5.8) quasars sample from Fan et al. (2006). All sample quasars are found to be in the PR regime; hence, their observed spectral properties (inner flux profile, extent of transmission window) cannot reliably constrain the value of x_HI. Four sample quasars show evidence for a local enhancement (up to 50%) in the local photoionization rate possibly produced by a galaxy overdensity. We discuss the possible interpretations and uncertainties of this result.
We provide measurements of the neutral hydrogen fraction xHI at z~6, by comparing semi-analytical models of the Lyalpha forest with observations of high-z quasars and Gamma Ray Bursts absorption spectra. We analyze the transmitted flux in a sample of 17 QSOs spectra at 5.74<zem<6.42 studying separately the narrow transmission windows (peaks) and the wide dark portions (gaps) in the observed absorption spectra. By comparing the statistics of these spectral features with our models, we conclude that xHI evolves smoothly from 10^{-4.4} at z=5.3 to 10^{-4.2} at z=5.6, with a robust upper limit xHI<0.36 at z=6.3. We show the results of the first-ever detected transverse proximity effect in the HI Lyalpha forest, produced by the HII region of the faint quasar RD J1148+5253 at z=5.70 intervening along the LOS of SDSS J1148+5251 at z=6.42. Moreover, we propose a novel method to study cosmic reionization using absorption line spectra of high-redshift GRBs afterglows. We show that the time evolution and the statistics of gaps in the observed spectra represent exquisite tools to discriminate among different reionization models. By applying our methods to GRB 050904 detected at z=6.29, we show that the observation of this burst provides strong indications of a highly ionized intergalactic medium at z~6, with an estimated mean neutral hydrogen fraction xHI=6.4pm 0.3times 10^{-5} along that line of sight.
We propose to study cosmic reionization using absorption line spectra of high-redshift Gamma Ray Burst (GRB) afterglows. We show that the statistics of the dark portions (gaps) in GRB absorption spectra represent exquisite tools to discriminate among different reionization models. We then compute the probability to find the largest gap in a given width range [Wmax, Wmax + dW] at a flux threshold Fth for burst afterglows at redshifts 6.3 < z < 6.7. We show that different reionization scenarios populate the (Wmax, Fth) plane in a very different way, allowing to distinguish among different reionization histories. We provide here useful plots that allow a very simple and direct comparison between observations and model results. Finally, we apply our methods to GRB 050904 detected at z = 6.29. We show that the observation of this burst strongly favors reionization models which predict a highly ionized intergalactic medium at z~6, with an estimated mean neutral hydrogen fraction xHI = 6.4 pm 0.3 times 10^-5 along the line of sight towards GRB 050904.
By means of carefully calibrated semi-analytical reionization models, we estimate the minimum mass of star-forming haloes required to match the current data. Models which do not include haloes of total mass M < 10^9 M_sun fail at reproducing the Gunn -Peterson and electron scattering optical depths simultaneously, as they contribute too few (many) photons at high (low, z approx 6) redshift. Marginally acceptable solutions require haloes with M approx 5 times 10^7 M_sun at z approx 10, corresponding to virial temperatures (sim 10^4K) for which cooling can be ensured by atomic transitions. However, a much better match to the data is obtained if minihaloes (M sim 10^6 M_sun) are included in the analysis. We have critically examined the assumptions made in our model and conclude that reionization in the large-galaxies-only scenario can remain viable only if metal-free stars and/or some other exotic sources at z > 6 are included.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا