ﻻ يوجد ملخص باللغة العربية
It has been recently suggested that supermassive black holes at z = 5-6 might form from super-fast (dot M > 10^4 Msun/yr) accretion occurring in unstable, massive nuclear gas disks produced by mergers of Milky-Way size galaxies. Interestingly, such mechanism is claimed to work also for gas enriched to solar metallicity. These results are based on an idealized polytropic equation of state assumption, essentially preventing the gas from cooling. We show that under more realistic conditions, the disk rapidly (< 1 yr) cools, the accretion rate drops, and the central core can grow only to approx 100 Msun. In addition, most of the disk becomes gravitationally unstable in about 100 yr, further quenching the accretion. We conclude that this scenario encounters a number of difficulties that possibly make it untenable.
When galaxies collide, dynamical friction drives their central supermassive black holes close enought to each other such that gravitational radiation becomes the leading dissipative effect. Gravitational radiation takes away energy, momentum and angu
The recent detection of possible neutrino emission from the blazar TXS 0506+056 was the first high-energy neutrino associated with an astrophysical source, making this special type of active galaxies promising neutrino emitters. The fact that two dis
The detection and characterization of supermassive black holes (SMBHs) in local low mass galaxies is crucial to our understanding of the origins of SMBHs. This statement assumes that low mass galaxies have had a relatively quiet cosmic history, so th
We study a model in which supermassive black holes (SMBHs) can grow by the combined action of gas accretion on heavy seeds and mergers of both heavy (m_s^h=10^5 Msol) and light (m_s^l = 10^2 Msol) seeds. The former result from the direct collapse of
Direct collapse within dark matter (DM) halos is a promising path to form supermassive black hole (SMBH) seeds at high redshifts. The outer part of this collapse remains optically thin, and has been studied intensively using numerical simulations. Ho