ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpreting the Transmission Windows of Distant Quasars

259   0   0.0 ( 0 )
 نشر من قبل Antonella Maselli
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose the Apparent Shrinking Criterion (ASC) to interpret the spatial extent, R_w, of transmitted flux windows in the absorption spectra of high-z quasars. The ASC can discriminate between the two regimes in which R_w corresponds either to the physical size, R_HII, of the quasar HII region, or to the distance, R^{max}_w, at which the transmitted flux drops to =0.1 and a Gunn-Peterson (GP) trough appears. In the first case (HR regime), one can determine the IGM mean HI fraction, x_HI; in the second (PR regime), the value of R_w allows to measure the local photoionization rate and the local enhancement of the photoionization rate, Gamma_G, due to nearby/intervening galaxies. The ASC has been tested against radiative transfer+SPH numerical simulations, and applied to 15 high-z (z>5.8) quasars sample from Fan et al. (2006). All sample quasars are found to be in the PR regime; hence, their observed spectral properties (inner flux profile, extent of transmission window) cannot reliably constrain the value of x_HI. Four sample quasars show evidence for a local enhancement (up to 50%) in the local photoionization rate possibly produced by a galaxy overdensity. We discuss the possible interpretations and uncertainties of this result.



قيم البحث

اقرأ أيضاً

160 - Jeremy L. Tinker 2009
We analyze the angular clustering of z~2.3 distant red galaxies (DRGs) measured by Quadri et al 2008. We find that, with robust estimates of the measurement errors and realistic halo occupation distribution modeling, the measured clustering can be we ll fit within standard halo occupation models, in contrast to previous results. However, in order to fit the strong break in w(theta) at theta=10 arcsec, nearly all satellite galaxies in the DRG luminosity range are required to be DRGs. Within this luminosity-threshold sample, the fraction of galaxies that are DRGs is ~44%, implying that the formation of DRGs is more efficient for satellite galaxies than for central galaxies. Despite the evolved stellar populations contained within DRGs at z=2.3, 90% of satellite galaxies in the DRG luminosity range have been accreted within 500 Myr. Thus, satellite DRGs must have known they would become satellites well before the time of their accretion. This implies that the formation of DRGs correlates with large-scale environment at fixed halo mass, although the large-scale bias of DRGs can be well fit without such assumptions. Further data are required to resolve this issue. Using the observational estimate that ~30% of DRGs have no ongoing star formation, we infer a timescale for star formation quenching for satellite galaxies of 450 Myr, although the uncertainty on this number is large. However, unless all non-star forming satellite DRGs were quenched before accretion, the quenching timescale is significantly shorter than z~0 estimates. Down to the completeness limit of the Quadri et al sample, we find that the halo masses of central DRGs are ~50% higher than non-DRGs in the same luminosity range, but at the highest halo masses the central galaxies are DRGs only ~2/3 of the time.
441 - Eric S. Perlman 2011
Aims. The small-scale nature of spacetime can be tested with observations of distant quasars. We comment on a recent paper by Tamburini et al. (A&A, 533, 71) which claims that Hubble Space Telescope observations of the most distant quasars place seve re constraints on models of foamy spacetime. Methods. If space is foamy on the Planck scale, photons emitted from distant objects will accumulate uncertainties in distance and propagation directions thus affecting the expected angular size of a compact object as a function of redshift. We discuss the geometry of foamy spacetime, and the appropriate distance measure for calculating the expected angular broadening. We also address the mechanics of carrying out such a test. We draw upon our previously published work on this subject (Christiansen et al. 2011), which carried out similar tests as Tamburini et al. and also went considerably beyond their work in several respects. Results. When calculating the path taken by photons as they travel from a distant source to Earth, one must use the comoving distance rather than the luminosity distance. This then also becomes the appropriate distance to use when calculating the angular broadening expected in a distant source. The use of the wrong distance measure causes Tamburini et al. to overstate the constraints that can be placed on models of spacetime foam. In addition, we consider the impact of different ways of parametrizing and measuring the effects of spacetime foam. Given the variation of the shape of the point-spread function (PSF) on the chip, as well as observation-specific factors, it is important to select carefully -- and document -- the comparison stars used as well as the methods used to compute the Strehl ratio.
158 - S. Frey 2012
The highest-redshift quasars are still rare and valuable objects for observational astrophysics and cosmology. They provide important constraints on the growth of the earliest supermassive black holes in the Universe, and information on the physical conditions in their environment. Among the nearly 60 quasars currently known at redshifts z>5.7, only a handful are strong emitters in radio continuum. These can be targets of sensitive high-resolution Very Long Baseline Interferometry (VLBI) observations to reveal their innermost structure, down to ~10 pc linear scales. We review the results of our earlier European VLBI Network (EVN) experiments on three of the most distant radio quasars known to date, and give a preliminary report on the EVN detection of a fourth one. The results obtained so far suggest that we see really young active galactic nuclei - not just in a cosmological sense but also in terms of their active life in radio.
105 - F. Bertoldi 2003
We report observations of three SDSS z>6 QSOs at 250 GHz (1.2mm) using the 117-channel Max-Planck Millimeter Bolometer (MAMBO-2) array at the IRAM 30-meter telescope. J1148+5251 (z=6.41) and J1048+4637 (z=6.23) were detected with 250 GHz flux densiti es of 5.0 +- 0.6 mJy and 3.0 +- 0.4 mJy, respectively. J1630+4012 (z=6.05) was not detected with a 3 sigma upper limit of 1.8 mJy. Upper flux density limits from VLA observations at 43 GHz for J1148+5251 and J1048+4637 imply steeply rising spectra, indicative of thermal infrared emission from warm dust. The far-infrared luminosities are estimated to be ~10^13 L_sun, and the dust masses ~10^8 M_sun, assuming Galactic dust properties. The presence of large amounts of dust in the highest redshift QSOs indicates that dust formation must be rapid during the early evolution of QSO host galaxies. Dust absorption may hinder the escape of ionizing photons which reionize the intergalactic medium at this early epoch.
Astronomical observations of distant quasars may be important to test models for quantum gravity, which posit Planck-scale spatial uncertainties (spacetime foam) that would produce phase fluctuations in the wavefront of radiation emitted by a source, which may accumulate over large path lengths. We show explicitly how wavefront distortions cause the image intensity to decay to the point where distant objects become undetectable if the accumulated path-length fluctuations become comparable to the wavelength of the radiation. We also reassess previous efforts in this area. We use X-ray and gamma-ray observations to rule out several models of spacetime foam, including the interesting random-walk and holographic models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا