ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Ly{alpha} emitters - quasars reionization constraints

89   0   0.0 ( 0 )
 نشر من قبل Sunghye Baek
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel method to investigate cosmic reionization, using joint spectral information on high redshift Lyman Alpha Emitters (LAE) and quasars (QSOs). Although LAEs have been proposed as reionization probes, their use is hampered by the fact their Ly{alpha} line is damped not only by intergalactic HI but also internally by dust. Our method allows to overcome such degeneracy. First, we carefully calibrate a reionization simulation with QSO absorption line experiments. Then we identify LAEs in two simulation boxes at z=5.7 and z=6.6 and we build synthetic images/spectra of a prototypical LAE. At redshift 5.7, we find that the Ly{alpha} transmissivity (T_LAE) ~ 0.25, almost independent of the halo mass. This constancy arises from the conspiracy of two effects: (i) the intrinsic Ly{alpha} line width and (ii) the infall peculiar velocity. At higher redshift, z=6.6, where the transmissivity is instead largely set by the local HI abundance and LAE transmissivity consequently increases with halo mass from 0.15 to 0.3. Although outflows are present, they are efficiently pressure-confined by infall in a small region around the LAE; hence they only marginally affect transmissivity. Finally, we cast LOS originating from background QSOs passing through foreground LAEs at different impact parameters, and compute the quasar transmissivity (T_QSO). At smaller impact parameters, d < 1 cMpc, a positive correlation between T_QSO and halo mass is found at z = 5.7, which tends to become less pronounced (i.e. flatter) at larger distances. By cross-correlating T_LAE and T_QSO, we can obtain a HI density estimate unaffected by dust. At z= 5.7, the cross-correlation is relatively weak,whereas at z = 6.6 we find a clear positive correlation. We conclude by briefly discussing the perspectives for the application of the method to existing and forthcoming data.

قيم البحث

اقرأ أيضاً

We carried out extended spectroscopic confirmations of Ly-alpha emitters (LAEs) at z=6.5 and 5.7 in the Subaru Deep Field. Now, the total number of spectroscopically confirmed LAEs is 45 and 54 at z=6.5 and 5.7, respectively, and at least 81% (70%) o f our photometric candidates at z=6.5 (5.7) have been spectroscopically identified as real LAEs. We made careful measurements of the Ly-alpha luminosity, both photometrically and spectroscopically, to accurately determine the Ly-alpha and rest-UV luminosity functions (LFs). The substantially improved evaluation of the Ly-alpha LF at z=6.5 shows an apparent deficit from z=5.7 at least at the bright end, and a possible decline even at the faint end, though small uncertainties remain. The rest-UV LFs at z=6.5 and 5.7 are in good agreement, at least at the bright end, in clear contrast to the differences seen in the Ly-alpha LF. These results imply an increase in the neutral fraction of the intergalactic medium from z=5.7 to 6.5. The rest-frame equivalent width (EW_0) distribution at z=6.5 seems to be systematically smaller than z=5.7, and it shows an extended tail toward larger EW_0. The bright end of the rest-UV LF can be reproduced from the observed Ly-alpha LF and a reasonable EW_0-UV luminosity relation. Integrating this rest-UV LF provides the first measurement of the contribution of LAEs to the photon budget required for reionization. The derived UV LF suggests that the fractional contribution of LAEs to the photon budget among Lyman break galaxies significantly increases towards faint magnitudes. Low-luminosity LAEs could dominate the ionizing photon budget, though this inference depends strongly on the uncertain faint-end slope of the Ly-alpha LF.
In this work we model the observed evolution in comoving number density of Lyman-alpha blobs (LABs) as a function of redshift, and try to find which mechanism of emission is dominant in LAB. Our model calculates LAB emission both from cooling radiati on from the intergalactic gas accreting onto galaxies and from star formation (SF). We have used dark matter (DM) cosmological simulation to which we applied empirical recipes for Ly$alpha$ emission produced by cooling radiation and SF in every halo. In difference to the previous work, the simulated volume in the DM simulation is large enough to produce an average LABs number density. At a range of redshifts $zsim 1-7$ we compare our results with the observed luminosity functions of LABs and LAEs. Our cooling radiation luminosities appeared to be too small to explain LAB luminosities at all redshifts. In contrast, for SF we obtained a good agreement with observed LFs at all redshifts studied. We also discuss uncertainties which could influence the obtained results, and how LAB LFs could be related to each other in fields with different density.
We combine high resolution hydrodynamical simulations with an intermediate resolution, dark matter only simulation and an analytical model for the growth of ionized regions to estimate the large scale distribution and redshift evolution of the visibi lity of Lyman-alpha emission in 6<=z<=8 galaxies. The inhomogeneous distribution of neutral hydrogen during the reionization process results in significant fluctuations in the Lyman-alpha transmissivity on large scales. The transmissivity depends not only on the ionized fraction of the intergalactic medium by volume and the amplitude of the local ionizing background, but is also rather sensitive to the evolution of the relative velocity shift of the Lyman-alpha emission line due to resonant scattering. We reproduce a decline in the space density of Lyman-alpha emitting galaxies as rapid as observed with a rather rapidly evolving neutral fraction between z=6-8, and a typical Lyman-alpha line velocity offset of 100 km/s redward of systemic at z=6 which decreases toward higher redshift. The new (02/2015) Planck results indicate such a recent end to reionization is no longer disfavoured by constraints from the cosmic microwave background.
67 - Alvaro Orsi 2011
We study the properties of Ly-alpha emitters in a cosmological framework by computing the escape of Ly-alpha photons through galactic outflows. We combine the GALFORM semi-analytical model of galaxy formation with a Monte Carlo Ly-alpha radiative tra nsfer code. The properties of Ly-alpha emitters at 0<z<7 are predicted using two outflow geometries: a Shell of neutral gas and a Wind ejecting material, both expanding at constant velocity. We characterise the differences in the Ly-alpha line profiles predicted by the two outflow geometries in terms of their width, asymmetry and shift from the line centre for a set of outflows with different hydrogen column densities, expansion velocities and metallicities. In general, the Ly-alpha line profile of the Shell geometry is broader and more asymmetric, and the Ly-alpha escape fraction is lower than with the Wind geometry for the same set of parameters. In order to implement the outflow geometries in the semi-analytical model GALFORM, a number of free parameters in the outflow model are set by matching the luminosity function of Ly-alpha emitters over the whole observed redshift range. The models are consistent with the observationally inferred Ly-alpha escape fractions, equivalent width distributions and with the shape of the Ly-alpha line from composite spectra. Interestingly, our predicted UV luminosity function of Ly-alpha emitters and the fraction of Ly-alpha emitters in Lyman-break galaxy samples at high redshift are in partial agreement with observations. Attenuation of the Ly-alpha line by the presence of a neutral intergalactic medium at high redshift could be responsible for this disagreement. We predict that Ly-alpha emitters constitute a subset of the galaxy population with lower metallicities, lower instantaneous star formation rates and larger sizes than the overall population at the same UV luminosity.
71 - Long-Long Feng 2007
Ly$alpha$ absorption spectra of QSOs at redshifts $zsimeq6$ show complete Gunn-Peterson absorption troughs (dark gaps) separated by tiny leaks. The dark gaps are from the intergalactic medium (IGM) where the density of neutral hydrogen are high enoug h to produce almost saturated absorptions, however, where the transmitted leaks come from is still unclear so far. We demonstrate that leaking can originate from the lowest density voids in the IGM as well as the ionized patches around ionizing sources using semi-analytical simulations. If leaks were produced in lowest density voids, the IGM might already be highly ionized, and the ionizing background should be almost uniform; in contrast, if leaks come from ionized patches, the neutral fraction of IGM would be still high, and the ionizing background is significantly inhomogeneous. Therefore, the origin of leaking is crucial to determining the epoch of inhomogeneous-to-uniform transition of the the ionizing photon background. We show that the origin could be studied with the statistical features of leaks. Actually, Ly$alpha$ leaks can be well defined and described by the equivalent width $W$ and the full width of half area $W_{rm H}$, both of which are less contaminated by instrumental resolution and noise. It is found that the distribution of $W$ and $W_{rm H}$ of Ly$alpha$ leaks are sensitive to the modeling of the ionizing background. We consider four representative reionization models. It is concluded that the leak statistics provides an effective tool to probe the evolutionary history of reionization at $zsimeq5-6.5$. Similar statistics would also be applicable to the reionization of He II at $z simeq 3$(Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا