ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the spin and the parity quantum numbers of the recently discovered Higgs-like boson at the LHC is a matter of great importance. In this paper, we consider the possibility of using the kinematics of the tagging jets in Higgs production via the vector boson fusion (VBF) process to test the tensor structure of the Higgs-vector boson ($HVV$) interaction and to determine the spin and CP properties of the observed resonance. We show that an anomalous $HVV$ vertex, in particular its explicit momentum dependence, drastically affects the rapidity between the two scattered quarks and their transverse momenta and, hence, the acceptance of the kinematical cuts that allow to select the VBF topology. The sensitivity of these observables to different spin-parity assignments, including the dependence on the LHC center of mass energy, are evaluated. In addition, we show that in associated Higgs production with a vector boson some kinematical variables, such as the invariant mass of the system and the transverse momenta of the two bosons and their separation in rapidity, are also sensitive to the spin--parity assignments of the Higgs--like boson.
Updated results on the search of Higgs bosons at the LHC with up to 17/fb of data have just been presented by the ATLAS and CMS collaborations. New constraints are provided by the LHCb and XENON experiments with the observation of the rare decay B_s -> mu+mu- and new limits on dark matter direct detection. In this paper, we update and extend the results on the implications of these data on the phenomenological Minimal Supersymmetric extension of the Standard Model (pMSSM) by using high statistics, flat scans of its 19 parameters. The new LHC data on bb and tau tau decays of the lightest Higgs state and the new CMS limits from the tau tau searches for the heavier Higgs states set stronger constraints on the pMSSM parameter space.
227 - S. Alekhin , A. Djouadi , S. Moch 2012
The ATLAS and CMS experiments observed a particle at the LHC with a mass $approx 126$ GeV, which is compatible with the Higgs boson of the Standard Model. A crucial question is, if for such a Higgs mass value, one could extrapolate the model up to hi gh scales while keeping the minimum of the scalar potential that breaks the electroweak symmetry stable. Vacuum stability requires indeed the Higgs boson mass to be $M_H gsim 129 pm 1$ GeV, but the precise value depends critically on the input top quark pole mass which is usually taken to be the one measured at the Tevatron, $m_t^{rm exp}=173.2 pm 0.9$ GeV. However, for an unambiguous and theoretically well-defined determination of the top quark mass one should rather use the total cross section for top quark pair production at hadron colliders. Confronting the latest predictions of the inclusive $p bar p to tbar t +X$ cross section up to next-to-next-to-leading order in QCD to the experimental measurement at the Tevatron, we determine the running mass in the $bar{rm MS}$-scheme to be $m_t^{bar{rm MS}}(m_t) = 163.3 pm 2.7$ GeV which gives a top quark pole mass of $m_t^{rm pole}= 173.3 pm 2.8$ GeV. This leads to the vacuum stability constraint $M_H geq 129.8 pm 5.6$ GeV to which a $approx 126$ GeV Higgs boson complies as the uncertainty is large. A very precise assessment of the stability of the electroweak vacuum can only be made at a future high-energy electron-positron collider, where the top quark pole mass could be determined with a few hundred MeV accuracy.
Many extensions of the Standard Model involve two Higgs doublet fields to break the electroweak symmetry, leading to the existence of three neutral and two charged Higgs particles. In particular, this is the case of the Minimal Supersymmetric extensi on of the Standard Model, the MSSM. A very important parameter is $tanbeta$ defined as the ratio of the vacuum expectation value of the two Higgs doublets. In this paper we focus on the left-right asymmetry in the production of polarised top quarks in association with charged Higgs bosons at the LHC. This quantity allows for a theoretically clean determination of $tanbeta$. In the MSSM, the asymmetry remains sensitive to the strong and electroweak radiative corrections and, thus, to the superparticle spectrum. Some possible implications of these results are discussed.
We examine the exclusion limits set by the CDF and D0 experiments on the Standard Model Higgs boson mass from their searches at the Tevatron in the light of large theoretical uncertainties on the signal and background cross sections. We show that whe n these uncertainties are consistently taken into account, the sensitivity of the experiments becomes significantly lower and the currently excluded mass range $M_H=158$-175 GeV would be entirely reopened. The necessary luminosity required to recover the current sensitivity is found to be a factor of two higher than the present one.
We consider the fully constrained version of the next-to-minimal supersymmetric extension of the standard model (cNMSSM) in which a singlet Higgs superfield is added to the two doublets that are present in the minimal extension (MSSM). Assuming unive rsal boundary conditions at a high scale for the soft supersymmetry-breaking gaugino, sfermion and Higgs mass parameters as well as for the trilinear interactions, we find that the model is more constrained than the celebrated minimal supergravity model. The phenomenologically viable region in the parameter space of the cNMSSM corresponds to a small value for the universal scalar mass m_0: in this case, one single input parameter is sufficient to describe the phenomenology of the model once the available constraints from collider data and cosmology are imposed. We present the particle spectrum of this very predictive model and discuss how it can be distinguished from the MSSM.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا