ﻻ يوجد ملخص باللغة العربية
We examine the exclusion limits set by the CDF and D0 experiments on the Standard Model Higgs boson mass from their searches at the Tevatron in the light of large theoretical uncertainties on the signal and background cross sections. We show that when these uncertainties are consistently taken into account, the sensitivity of the experiments becomes significantly lower and the currently excluded mass range $M_H=158$-175 GeV would be entirely reopened. The necessary luminosity required to recover the current sensitivity is found to be a factor of two higher than the present one.
Due to the high anticipated experimental precision at the Future Circular Collider FCC-ee (or other proposed $e^+e^-$ colliders, such as ILC, CLIC, or CEPC) for electroweak and Higgs-boson precision measurements, theoretical uncertainties may have, i
We apply a method proposed by members of CTEQ Collaboration to estimate the uncertainty in associated $W$-Higgs boson production at Run II of the Tevatron due to our imprecise knowledge of parton distribution functions. We find that the PDF uncertain
The remaining theoretical uncertainties from unknown higher-order corrections in the prediction for the light Higgs-boson mass of the MSSM are estimated. The uncertainties associated with three different approaches that are implemented in the publicl
We develop a technique to present Higgs coupling measurements, which decouple the poorly defined theoretical uncertainties associated to inclusive and exclusive cross section predictions. The technique simplifies the combination of multiple measureme
We examine the prospects for extending the Tevatron reach for a Standard Model Higgs boson by including the semileptonic Higgs boson decays h --> WW --> l nu jj for M_h >~ 2 M_W, and h --> W jj --> l nu jj for M_h <~ 2 M_W, where j is a hadronic jet.