ترغب بنشر مسار تعليمي؟ اضغط هنا

Benchmark scenarios for the NMSSM

60   0   0.0 ( 0 )
 نشر من قبل Abdelhak Djouadi
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss constrained and semi--constrain


قيم البحث

اقرأ أيضاً

We propose six new benchmark scenarios for Higgs boson searches in the Minimal Supersymmetric Standard Model. Our calculations follow the recommendations of the LHC Higgs Cross Section Working Group, and benefit from recent developments in the predic tions for the Higgs-boson masses and mixing. All of the proposed scenarios are compatible with the most recent results from Run 2 of the LHC. In particular, they feature a scalar with mass and couplings compatible with those of the observed Higgs boson, and a significant portion of their parameter space is allowed by the limits from the searches for SUSY particles and additional Higgs bosons. We define a scenario where all SUSY particles are relatively heavy, and two scenarios with light colorless SUSY particles (charginos, neutralinos and, in one case, staus). In addition, we present two scenarios featuring alignment without decoupling, realized with either the lighter or the heavier scalar being SM-like, and a scenario with CP violation.
409 - Shuai Xu , Sibo Zheng 2019
It is well known that the observed Higgs mass is more naturally explained in the NMSSM than in the MSSM. Without any violation of this success, there are variants on the NMSSM which can lead to new phenomenologies. In this study we propose a new vari ant of NMSSM by imposing an unbroken $R$ symmetry. We firstly identify the minimal structure of such scenario from the perspective of both simplicity and viability, then compare model predictions to current experimental limits, and finally highlight main features that differ from the well-known scenarios.
176 - Bumseok Kyae 2014
We introduce one pair of inert Higgs doublets {H_d, H_u} and singlets {N^c, N}, and consider their couplings with the Higgs doublets of the minimal supersymmetric standard model (MSSM), W supset y_N N^c h_u H_d + y_N N h_d H_u. We assign extra U(1)_{ Z} gauge charges only to the extra vector-like superfields, and so all the MSSM superfields remain neutral under the new U(1)_{Z}. They can be an extension of the lambda term, W supset lambda S h_u h_d in the next-to-MSSM (NMSSM). Due to the U(1)_{Z}, the maximally allowed low energy value of y_N can be lifted up to 0.85, avoiding a Landau-pole (LP) below the grand unification scale. Such colorless vector-like superfields remarkably enhance the radiative MSSM Higgs mass particularly for large tanbeta through the y_N term and the corresponding holomorphic soft term. As a result, the lower bound of lambda and the upper bound of tanbeta can be relaxed to disappear from the restricted parameter space of the original NMSSM, 0.6 < lambda < 0.7 and 1< tanbeta < 3. Thus, the valid parameter space significantly expands up to 0 < lambda < 0.7, 0 < y_N < 0.85, and 2 < tanbeta < 50, evading the LP problem and also explaining the 126 GeV Higgs mass naturally.
Physics beyond the Standard Model (SM) may manifest itself as small deviations from the SM predictions for Higgs signal strengths at 125 GeV. Then, a plausible and interesting possibility is that the Higgs sector is extended and at the weak scale the re appears an additional Higgs boson weakly coupled to the SM sector. Combined with the LEP excess in $e^+e^-to Z(hto bbar b)$, the diphoton excess around 96 GeV recently reported by CMS may suggest such a possibility. We examine if those LEP and CMS excesses can be explained simultaneously by a singlet-like Higgs boson in the general next-to-minimal supersymmetric Standard Model (NMSSM). Higgs mixing in the NMSSM relies on the singlet coupling to the MSSM Higgs doublets and the higgsino mass parameter, and thus is subject to the constraints on these supersymmetric parameters. We find that the NMSSM can account for both the LEP and CMS excesses at 96 GeV while accommodating the observed 125 GeV SM-like Higgs boson. Interestingly, the required mixing angles constrain the heavy doublet Higgs boson to be heavier than about 500 GeV. We also show that the viable region of mixing parameter space is considerably modified if the higgsino mass parameter is around the weak scale, mainly because of the Higgs coupling to photons induced by the charged higgsinos.
We calculate the baryon asymmetry of the Universe in the Z3-invariant Next-to-Minimal Supersymmetric Standard Model where the interactions of the singlino provide the necessary source of charge and parity violation. Using the closed time path formali sm, we derive and solve transport equations for the cases where the singlet acquires a vacuum expectation value (VEV) before and during the electroweak phase transition. We perform a detailed scan to show how the baryon asymmetry varies throughout the relevant parameter space. Our results show that the case where the singlet acquires a VEV during the electroweak phase transition typically generates a larger baryon asymmetry, although we expect that the case where the singlet acquires a VEV first is far more common for any model in which parameters unify at a high scale. Finally, we examine the dependence of the baryon asymmetry on the three-body interactions involving gauge singlets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا