ﻻ يوجد ملخص باللغة العربية
We consider the fully constrained version of the next-to-minimal supersymmetric extension of the standard model (cNMSSM) in which a singlet Higgs superfield is added to the two doublets that are present in the minimal extension (MSSM). Assuming universal boundary conditions at a high scale for the soft supersymmetry-breaking gaugino, sfermion and Higgs mass parameters as well as for the trilinear interactions, we find that the model is more constrained than the celebrated minimal supergravity model. The phenomenologically viable region in the parameter space of the cNMSSM corresponds to a small value for the universal scalar mass m_0: in this case, one single input parameter is sufficient to describe the phenomenology of the model once the available constraints from collider data and cosmology are imposed. We present the particle spectrum of this very predictive model and discuss how it can be distinguished from the MSSM.
We analyze the experimental data from the search for new particles at LEP 100 and obtain mass bounds for the neutralinos of the Next--To--Minimal Supersymmetric Standard Model (NMSSM). We find that for $tanbeta gsim 5.5$ a massless neutralino is stil
The purpose of this paper is to present a complete and consistent list of the Feynman rules for the vertices of neutralinos and Higgs bosons in the Next-To-Minimal Supersymmetric Standard Model (NMSSM), which does not yet exist in the literature. The
The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete $Z_3$-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesi
Within the framework of the Next-To-Minimal Supersymmetric Standard Model (NMSSM) we study neutralino production $e^+e^- longrightarrow tilde{chi}^0_i tilde{chi}^0_j$ ($i,j=1,ldots ,5$) at center-of-mass energies between 100 and 600 GeV and the decay
We assess the extent to which the NMSSM can allow for light dark matter in the $2gevlsim mcnonelsim 12gev$ mass range with correct relic density and large spin-independent direct-detection cross section, $sigsi$, in the range suggested by cogent and