ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the rest-frame UV wavelength dependence of the Petrosian-like half-light radius ($r_{50}$), and the concentration parameter for a sample of 198 star-forming galaxies at 0.5 < z < 1.5. We find a ~5% decrease in $r_{50}$ from 1500 AA to 3000 AA, with half-light radii at 3000 AA ranging from 0.6 kpc to 6 kpc. We also find a decrease in concentration of ~0.07 (1.9 < $C_{3000}$ < 3.9). The lack of a strong relationship between $r_{50}$ and wavelength is consistent with a model in which clumpy star formation is distributed over length scales comparable to the galaxys rest-frame optical light. While the wavelength dependence of $r_{50}$ is independent of size at all redshifts, concentration decreases more sharply in the far-UV (~1500 AA) for large galaxies at z ~ 1. This decrease in concentration is caused by a flattening of the inner ~20% of the light profile in disk-like galaxies, indicating that the central regions have different UV colors than the rest of the galaxy. We interpret this as a bulge component with older stellar populations and/or more dust. The size-dependent decrease in concentration is less dramatic at z ~ 2, suggesting that bulges are less dusty, younger, and/or less massive than the rest of the galaxy at higher redshifts.
A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambigu ity between the planetary and binary-source interpretations. In this paper, we present analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive planetary signals.
122 - A. Gould 2012
The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing lightcurve near the peak of an Amax ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations fo r a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the lightcurve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge.
We analyze MOA-2010-BLG-311, a high magnification (A_max>600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a point lens and a 2-body lens model and find that the 2-body lens model is a better fit but with only Delta chi^2~80. The preferred mass ratio between the lens star and its companion is $q=10^(-3.7+/-0.1), placing the candidate companion in the planetary regime. Despite the formal significance of the planet, we show that because of systematics in the data the evidence for a planetary companion to the lens is too tenuous to claim a secure detection. When combined with analyses of other high-magnification events, this event helps empirically define the threshold for reliable planet detection in high-magnification events, which remains an open question.
We describe the infrared properties of sources detected over ~36 deg^2 of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5-sigm a point-source depths of 34 and 0.048 mJy at 250 micron and 3.4 micron, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of ~630 deg^{-2}. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z<1. For sources with spectroscopic redshifts at z<0.3, we find a linear correlation between the infrared luminosity at 3.4 micron and that at 250 micron, with +-50% scatter over ~1.5 orders of magnitude in luminosity, ~10^9 - 10^{10.5} L_sun. By contrast, the matched sources without previously measured redshifts (r>~20.5) have 250-350 micron flux density ratios that suggest either high-redshift galaxies (z>~1.5) or optically faint low-redshift galaxies with unusually low temperatures (T<~20). Their small 3.4-250 micron flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (~30%) in a 12 micron flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.
Using the Millennium-II Simulation dark matter sub-halo merger histories, we created mock catalogs of Lyman Alpha Emitting (LAE) galaxies at z=3.1 to study the properties of their descendants. Several models were created by selecting the sub-halos to match the number density and typical dark matter mass determined from observations of these galaxies. We used mass-based and age-based selection criteria to study their effects on descendant populations at z~2, 1 and 0. For the models that best represent LAEs at z=3.1, the z=0 descendants have a median dark matter halo mass of 10^12.7 M_Sun, with a wide scatter in masses (50% between 10^11.8 and 10^13.7 M_Sun). Our study differentiated between central and satellite sub-halos and found that ~55% of z=0 descendants are central sub-halos with M_Median~10^12 M_Sun. This confirms that central z=0 descendants of z=3.1 LAEs have halo masses typical of L* type galaxies. The satellite sub-halos reside in group/cluster environments with dark matter masses around 10^14 M_Sun. The median descendant mass is robust to various methods of age determination, but it could vary by a factor of 5 due to current observational uncertainties in the clustering of LAEs used to determine their typical z=3.1 dark matter mass.
We present the analysis of four candidate short duration binary microlensing events from the 2006-2007 MOA Project short event analysis. These events were discovered as a byproduct of an analysis designed to find short timescale single lens events th at may be due to free-floating planets. Three of these events are determined to be microlensing events, while the fourth is most likely caused by stellar variability. For each of the three microlensing events, the signal is almost entirely due to a brief caustic feature with little or no lensing attributable mainly to the lens primary. One of these events, MOA-bin-1, is due to a planet, and it is the first example of a planetary event in which stellar host is only detected through binary microlensing effects. The mass ratio and separation are q = 4.9 +- 1.4 x 10^{-3} and s = 2.10 +- 0.05, respectively. A Bayesian analysis based on a standard Galactic model indicates that the planet, MOA-bin-1Lb, has a mass of m_p = 3.7 +- 2.1 M_{Jup}, and orbits a star of M_* = 0.75{+0.33 -0.41} M_solar at a semi-major axis of a = 8.3 {+4.5 -2.7} AU. This is one of the most massive and widest separation planets found by microlensing. The scarcity of such wide separation planets also has implications for interpretation of the isolated planetary mass objects found by this analysis. If we assume that we have been able to detect wide separation planets with a efficiency at least as high as that for isolated planets, then we can set limits on the distribution on planets in wide orbits. In particular, if the entire isolated planet sample found by Sumi et al. (2011) consists of planets bound in wide orbits around stars, we find that it is likely that the median orbital semi-major axis is > 30 AU.
139 - K.-H. Hwang , C. Han , I. A. Bond 2010
We report the result of the analysis of the light curve of the microlensing event MOA-2009-BLG-016. The light curve is characterized by a short-duration anomaly near the peak and an overall asymmetry. We find that the peak anomaly is due to a binary companion to the primary lens and the asymmetry of the light curve is explained by the parallax effect caused by the acceleration of the observer over the course of the event due to the orbital motion of the Earth around the Sun. In addition, we detect evidence for the effect of the finite size of the source near the peak of the event, which allows us to measure the angular Einstein radius of the lens system. The Einstein radius combined with the microlens parallax allows us to determine the total mass of the lens and the distance to the lens. We identify three distinct classes of degenerate solutions for the binary lens parameters, where two are manifestations of the previously identified degeneracies of close/wide binaries and positive/negative impact parameters, while the third class is caused by the symmetric cycloid shape of the caustic. We find that, for the best-fit solution, the estimated mass of the lower-mass component of the binary is (0.04 +- 0.01) M_sun, implying a brown-dwarf companion. However, there exists a solution that is worse only by Deltachi^2 ~ 3 for which the mass of the secondary is above the hydrogen-burning limit. Unfortunately, resolving these two degenerate solutions will be difficult as the relative lens-source proper motions for both are similar and small (~ 1 mas/yr) and thus the lens will remain blended with the source for the next several decades.
We present a rest-frame ultraviolet morphological analysis of 78 resolved, high S/N z ~ 3.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S). Using HST/ACS V -band images taken as part of the GEMS, GOODS, and HUDF surveys . For each LAE system identified via our ground-based narrow-band imaging, we have identified those LAE systems with multiple components. We measure the concentration index and present the results of our GALFIT fits for ellipticity, Sersic index, and sizes for each resolved component with S/N > 30 as well as for each LAE system with S/N > 30. The LAEs show a heterogeneous distribution of morphologies while the ma jority tend to be highly concentrated and compact in size. We only measure the morphological properties of resolved LAEs. For systems showing multiple components we also measured the morphology of the individual components. The resolved LAEs are highly concentrated (2 < C < 4) and show a similar distribution to that measured for stars, suggesting that this diagnostic is a poor discriminator near the resolution limit. The measured ellipticities for components show a distribution peaked at {epsilon} ~ 0.55 which is significantly different from the flat distribution of ellipticities observed for local spiral galaxies and is similar to the distribution found for Lyman-break galaxies at the same redshift. There is a wide range of best-fit Sersic indices (1 < n < 10) with the majority being between 0 < n < 2. The distribution is similar to the distribution of Sersic indices seen locally. A visual inspection of the images suggests a qualitative morphological transition at n ~ 2, with small-n LAEs having extended or multimodal light distributions and relatively little diffuse emission and large-n LAEs have compact central components surrounded by diffuse emission.
We present the results of a high-spatial-resolution study of the line emission in a sample of z=3.1 Lyman-Alpha-Emitting Galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrow-band imaging , two have clear detections and an additional two are barely detected (~2-sigma). The clear detections are within ~0.5 kpc of the centroid of the corresponding rest-UV continuum source, suggesting that the line-emitting gas and young stars in LAEs are spatially coincident. The brightest object exhibits extended emission with a half-light radius of ~1.5 kpc, but a stack of the remaining LAE surface brightness profiles is consistent with the WFPC2 point spread function. This suggests that the Lyman Alpha emission in these objects originates from a compact (<~2 kpc) region and cannot be significantly more extended than the far-UV continuum emission (<~1 kpc). Comparing our WFPC2 photometry to previous ground-based measurements of their monochromatic fluxes, we find at 95% (99.7%) confidence that we cannot be missing more than 22% (32%) of the Lyman Alpha emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا