ترغب بنشر مسار تعليمي؟ اضغط هنا

The Wavelength Dependence of High-Redshift Galaxy Structure in the Rest-Frame Ultraviolet

120   0   0.0 ( 0 )
 نشر من قبل Nicholas Bond
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the rest-frame UV wavelength dependence of the Petrosian-like half-light radius ($r_{50}$), and the concentration parameter for a sample of 198 star-forming galaxies at 0.5 < z < 1.5. We find a ~5% decrease in $r_{50}$ from 1500 AA to 3000 AA, with half-light radii at 3000 AA ranging from 0.6 kpc to 6 kpc. We also find a decrease in concentration of ~0.07 (1.9 < $C_{3000}$ < 3.9). The lack of a strong relationship between $r_{50}$ and wavelength is consistent with a model in which clumpy star formation is distributed over length scales comparable to the galaxys rest-frame optical light. While the wavelength dependence of $r_{50}$ is independent of size at all redshifts, concentration decreases more sharply in the far-UV (~1500 AA) for large galaxies at z ~ 1. This decrease in concentration is caused by a flattening of the inner ~20% of the light profile in disk-like galaxies, indicating that the central regions have different UV colors than the rest of the galaxy. We interpret this as a bulge component with older stellar populations and/or more dust. The size-dependent decrease in concentration is less dramatic at z ~ 2, suggesting that bulges are less dusty, younger, and/or less massive than the rest of the galaxy at higher redshifts.



قيم البحث

اقرأ أيضاً

We study how the sizes and radial profiles of galaxies vary with wavelength, by fitting Sersic functions simultaneously to imaging in nine optical and near-infrared bands. To quantify the wavelength dependence of effective radius we use the ratio, $m athcal{R}$, of measurements in two restframe bands. The dependence of Sersic index on wavelength, $mathcal{N}$, is computed correspondingly. Vulcani et al. (2014) have demonstrated that different galaxy populations present sharply contrasting behaviour in terms of $mathcal{R}$ and $mathcal{N}$. Here we study the luminosity dependence of this result. We find that at higher luminosities, early-type galaxies display a more substantial decrease in effective radius with wavelength, whereas late-types present a more pronounced increase in Sersic index. The structural contrast between types thus increases with luminosity. By considering samples at different redshifts, we demonstrate that lower data quality reduces the apparent difference between the main galaxy populations. However, our conclusions remain robust to this effect. We show that accounting for different redshift and luminosity selections partly reconciles the size variation measured by Vulcani et al. with the weaker trends found by other recent studies. Dividing galaxies by visual morphology confirms the behaviour inferred using morphological proxies, although the sample size is greatly reduced. Finally, we demonstrate that varying dust opacity and disc inclination can account for features of the joint distribution of $mathcal{R}$ and $mathcal{N}$ for late-type galaxies. However, dust does not appear to explain the highest values of $mathcal{R}$ and $mathcal{N}$. The bulge-disc nature of galaxies must also contribute to the wavelength-dependence of their structure.
We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250-770GHz. This spectrum was constructed by stacking ALMA 3mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z=2.0-5.7. In addition to multiple bright spectral features of 12CO, [CI], and H2O, we also detect several faint transitions of 13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the 13CO brightness in these objects is comparable to that of the only other z>2 star-forming galaxy in which 13CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense medium with T_kin ~ 55K and n_H2 >~ 10^5.5 cm^-3. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4-1.2mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.
We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z=4-8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Year 1 Hubble Frontier Field d eep parallel observations. These surveys provides an effective volume of 0.6-1.2 x 10^6 Mpc^3 over this epoch, allowing us to perform a robust search for faint (M_UV=-18) and bright (M_UV < -21) galaxies. We select candidate galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 galaxies at 3.5<z<8.5, with >1000 galaxies at z~6-8. We measure the luminosity function using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our results agree with previous studies, yet we find a higher abundance of UV-bright galaxies at z>6, with M* ~ -21 at z>5, different than that inferred based on previous trends at lower redshift. At z=8, a single power-law provides an equally good fit to the UV luminosity function, while at z=6 and 7, an exponential cutoff at the bright-end is moderately preferred. We compare to semi-analytical models, and find that the lack of evolution in M* is consistent with models where the impact of dust attenuation on the bright-end of the luminosity function decreases at higher redshift. We measure the evolution of the cosmic star-formation rate density, correcting for dust attenuation, and find that it declines as (1+z)^(-4.3 +/- 0.5) at z>4, consistent with observations at z>9. Our observations are consistent with a reionization history that starts at z>10, completes at z>6, and reaches a midpoint (x_HII = 0.5) at 6.7<z<9.4. Finally, our observations predict that the abundance of bright z=9 galaxies is likely higher than previous constraints, though consistent with recent estimates of bright z~10 galaxies. [abridged]
For the extremely bright lensed galaxy SDSS J1723+3411 at z=1.3293 , we analyze spatially integrated MMT, Keck, and Hubble Space Telescope spectra that fully cover the rest-frame wavelength range of 1400 to 7200 Angstroms. We also analyze near-IR spe ctra from Gemini that cover H alpha for a portion of the lensed arc. We report fluxes for 42 detected emission lines, and upper limits for an additional 22. This galaxy has extreme emission line ratios and high equivalent widths that are characteristic of extreme emission-line galaxies. We compute strong emission line diagnostics from both the rest-frame optical and rest-frame ultraviolet (UV), to constrain physical conditions and test the spectral diagnostics themselves. We tightly determine the nebular physical conditions using the most reliable diagnostics, and then compare to results from other diagnostics. We find disappointing performance from the UV--only diagnostics: they either are unable to measure the metallicity or dramatically under-estimate it; they over-estimate the pressure; and the UV diagnostic of ionization parameter has a strong metallicity dependence in this regime. Based on these results, we suggest that upcoming James Webb Space Telescope spectroscopic surveys of galaxies in the reionization epoch should invest the additional integration time to capture the optical [O II] and [O III] emission lines, and not rely solely on the rest-frame UV emission lines. We make available the spectra; they represent one of the highest-quality emission line spectral atlases of star-forming galaxy available beyond the local universe, and will aid planning observations with JWST.
We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 < z < 8. We use new wide-field near-infrared data in GOODS-S from the CANDELS, HUDF09 and ERS programs to select galaxies via photometric redshift measurements. Our sa mple consists of 2812 candidate galaxies at z > 3.5, including 113 at z = 7 to 8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models, and measure the value of the UV spectral slope (beta) from the best-fit model spectrum. The median value of beta evolves significantly from -1.82 (+0.00,-0.04) at z = 4, to -2.37 (+0.26,-0.06) at z = 7. Additionally, we find that faint galaxies at z = 7 have beta = -2.68 (+0.39,-0.24) (~ -2.4 after correcting for observational bias); this is redder than previous claims in the literature, and does not require exotic stellar populations to explain their colors. This evolution can be explained by an increase in dust extinction, with the timescale consistent with low-mass AGB stars forming the bulk of the dust. We find no significant (< 2-sigma) correlation between beta and M_UV when measuring M_UV at a consistent rest-frame wavelength of 1500 A. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between beta and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have red colors at each redshift, implying that dust can build up quickly in massive galaxies, and that feedback is likely removing dust from low-mass galaxies at z > 7. Thus the stellar-mass - metallicity relation, previously observed up to z ~ 3, may extend out to z = 7 - 8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا