ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretation of a Short-Term Anomaly in the Gravitational Microlensing Event MOA-2012-BLG-486

117   0   0.0 ( 0 )
 نشر من قبل Cheongho Han
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambiguity between the planetary and binary-source interpretations. In this paper, we present analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive planetary signals.



قيم البحث

اقرأ أيضاً

202 - K.-H. Hwang , C. Han , I. A. Bond 2010
We report the result of the analysis of the light curve of the microlensing event MOA-2009-BLG-016. The light curve is characterized by a short-duration anomaly near the peak and an overall asymmetry. We find that the peak anomaly is due to a binary companion to the primary lens and the asymmetry of the light curve is explained by the parallax effect caused by the acceleration of the observer over the course of the event due to the orbital motion of the Earth around the Sun. In addition, we detect evidence for the effect of the finite size of the source near the peak of the event, which allows us to measure the angular Einstein radius of the lens system. The Einstein radius combined with the microlens parallax allows us to determine the total mass of the lens and the distance to the lens. We identify three distinct classes of degenerate solutions for the binary lens parameters, where two are manifestations of the previously identified degeneracies of close/wide binaries and positive/negative impact parameters, while the third class is caused by the symmetric cycloid shape of the caustic. We find that, for the best-fit solution, the estimated mass of the lower-mass component of the binary is (0.04 +- 0.01) M_sun, implying a brown-dwarf companion. However, there exists a solution that is worse only by Deltachi^2 ~ 3 for which the mass of the secondary is above the hydrogen-burning limit. Unfortunately, resolving these two degenerate solutions will be difficult as the relative lens-source proper motions for both are similar and small (~ 1 mas/yr) and thus the lens will remain blended with the source for the next several decades.
125 - H. Park , C. Han , A. Gould 2014
Characterizing a microlensing planet is done from modeling an observed lensing light curve. In this process, it is often confronted that solutions of different lensing parameters result in similar light curves, causing difficulties in uniquely interp reting the lens system, and thus understanding the causes of different types of degeneracy is important. In this work, we show that incomplete coverage of a planetary perturbation can result in degenerate solutions even for events where the planetary signal is detected with a high level of statistical significance. We demonstrate the degeneracy for an actually observed event OGLE-2012-BLG-0455/MOA-2012-BLG-206. The peak of this high-magnification event $(A_{rm max}sim400)$ exhibits very strong deviation from a point-lens model with $Deltachi^{2}gtrsim4000$ for data sets with a total number of measurement 6963. From detailed modeling of the light curve, we find that the deviation can be explained by four distinct solutions, i.e., two very different sets of solutions, each with a two-fold degeneracy. While the two-fold (so-called close/wide) degeneracy is well-understood, the degeneracy between the radically different solutions is not previously known. The model light curves of this degeneracy differ substantially in the parts that were not covered by observation, indicating that the degeneracy is caused by the incomplete coverage of the perturbation. It is expected that the frequency of the degeneracy introduced in this work will be greatly reduced with the improvement of the current lensing survey and follow-up experiments and the advent of new surveys.
We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In this event a short duration (~7 days) low amplitude deviation in the light curve due a single lens profile was observed in both the MOA and OGLE survey ob servations. We find that the observed features of the light curve can only be reproduced using a binary microlensing model with an extreme (planetary) mass ratio of 0.0039 +/- (11, 07) for the lensing system. If the lens system comprises a main sequence primary, we infer that the secondary is a planet of about 1.5 Jupiter masses with an orbital radius of ~3 AU.
We present the analysis of the binary gravitational microlensing event MOA-2015-BLG-020. The event has a fairly long timescale (about 63 days) and thus the light curve deviates significantly from the lensing model that is based on the rectilinear len s-source relative motion. This enables us to measure the microlensing parallax through the annual parallax effect. The microlensing parallax parameters constrained by the ground-based data are confirmed by the Spitzer observations through the satellite parallax method. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined. It is found that the binary lens is composed of two dwarf stars with masses $M_1 = 0.606 pm 0.028M_odot$ and $M_2 = 0.125 pm 0.006M_odot$ in the Galactic disk. Assuming the source star is at the same distance as the bulge red clump stars, we find the lens is at a distance $D_L = 2.44 pm 0.10 kpc$. In the end, we provide a summary and short discussion of all published microlensing events in which the annual parallax effect is confirmed by other independent observations.
We report a measurement of the shape of the source star in microlensing event MOA 2002-BLG-33. The lens for this event was a close binary whose centre-of-mass passed almost directly in front of the source star. At this time, the source star was close ly bounded on all sides by a caustic of the lens. This allowed the oblateness of the source star to be constrained. We found that a/b = 1.02^{+0.04}_{-0.02} where a and b are its semi-major and semi-minor axes respectively. The angular resolution of this measurement is approximately 0.04 microarcsec. We also report HST images of the event that confirm a previous identification of the source star as an F8-G2 turn-off main-sequence star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا