ﻻ يوجد ملخص باللغة العربية
We analyze MOA-2010-BLG-311, a high magnification (A_max>600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a point lens and a 2-body lens model and find that the 2-body lens model is a better fit but with only Delta chi^2~80. The preferred mass ratio between the lens star and its companion is $q=10^(-3.7+/-0.1), placing the candidate companion in the planetary regime. Despite the formal significance of the planet, we show that because of systematics in the data the evidence for a planetary companion to the lens is too tenuous to claim a secure detection. When combined with analyses of other high-magnification events, this event helps empirically define the threshold for reliable planet detection in high-magnification events, which remains an open question.
We report the discovery of a possible planet in microlensing event MOA-2010-BLG-353. This event was only recognised as having a planetary signal after the microlensing event had finished, and following a systematic analysis of all archival data for b
We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11+/-0.01 M_{sun} and Mp = 9.2+/-2.2M_Earth, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The sys
Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of pla
MOA-2006-BLG-074 was selected as one of the most promising planetary candidates in a retrospective analysis of the MOA collaboration: its asymmetric high-magnification peak can be perfectly explained by a source passing across a central caustic defor
The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing lightcurve near the peak of an Amax ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations fo