ترغب بنشر مسار تعليمي؟ اضغط هنا

The angular size of the broad line region (BLR) of the nearby active galactic nucleus (AGN) NGC 3783 has been spatially resolved by recent observations with VLTI/GRAVITY. A reverberation mapping (RM) campaign has also recently obtained high quality l ight curves and measured the linear size of the BLR in a way that is complementary to the GRAVITY measurement. The size and kinematics of the BLR can be better constrained by a joint analysis that combines both GRAVITY and RM data. This, in turn, allows us to obtain the mass of the supermassive black hole in NGC3783 with an accuracy that is about a factor of two better than that inferred from GRAVITY data alone. We derive $M_mathrm{BH}=2.54_{-0.72}^{+0.90}times 10^7,M_odot$. Finally, and perhaps most notably, we are able to measure a geometric distance to NGC 3783 of $39.9^{+14.5}_{-11.9}$ Mpc. We are able to test the robustness of the BLR-based geometric distance with measurements based on the Tully-Fisher relation and other indirect methods. We find the geometric distance is consistent with other methods within their scatter. We explore the potential of BLR-based geometric distances to directly constrain the Hubble constant, $H_0$, and identify differential phase uncertainties as the current dominant limitation to the $H_0$ measurement precision for individual sources.
115 - R. Abuter , A. Amorim , M. Baubock 2021
We report the time-resolved spectral analysis of a bright near-infrared and moderate X-ray flare of Sgr A*. We obtained light curves in the $M$-, $K$-, and $H$-bands in the mid- and near-infrared and in the $2-8~mathrm{keV}$ and $2-70~mathrm{keV}$ ba nds in the X-ray. The observed spectral slope in the near-infrared band is $ u L_ upropto u^{0.5pm0.2}$; the spectral slope observed in the X-ray band is $ u L_ u propto u^{-0.7pm0.5}$. We tested synchrotron and synchrotron self-Compton (SSC) scenarios. The observed near-infrared brightness and X-ray faintness, together with the observed spectral slopes, pose challenges for all models explored. We rule out a scenario in which the near-infrared emission is synchrotron emission and the X-ray emission is SSC. A one-zone model in which both the near-infrared and X-ray luminosity are produced by SSC and a model in which the luminosity stems from a cooled synchrotron spectrum can explain the flare. In order to describe the mean SED, both models require specific values of the maximum Lorentz factor $gamma_{max}$, which however differ by roughly two orders of magnitude: the SSC model suggests that electrons are accelerated to $gamma_{max}sim 500$, while cooled synchrotron model requires acceleration up to $gamma_{max}sim5times 10^{4}$. The SSC scenario requires electron densities of $10^{10}~mathrm{cm^{-3}}$ much larger than typical ambient densities in the accretion flow, and thus require in an extraordinary accretion event. In contrast, assuming a source size of $1R_s$, the cooled synchrotron scenario can be realized with densities and magnetic fields comparable with the ambient accretion flow. For both models, the temporal evolution is regulated through the maximum acceleration factor $gamma_{max}$, implying that sustained particle acceleration is required to explain at least a part of the temporal evolution of the flare.
Using VLTI/GRAVITY and SINFONI data, we investigate the sub-pc gas and dust structure around the nearby type 1 AGN hosted by NGC 3783. The K-band coverage of GRAVITY uniquely allows a simultaneous analysis of the size and kinematics of the broad line region (BLR), the size and structure of the near-IR continuum emitting hot dust, and the size of the coronal line region (CLR). We find the BLR probed through broad Br$gamma$ emission is well described by a rotating, thick disk with a radial distribution of clouds peaking in the inner region. In our BLR model the physical mean radius of 16 light days is nearly twice the 10 day time lag that would be measured, which matches very well the 10 day time lag that has been measured by reverberation mapping. We measure a hot dust FWHM size of 0.74 mas (0.14 pc) and further reconstruct an image of the hot dust which reveals a faint (5% of the total flux) offset cloud which we interpret as an accreting cloud heated by the central AGN. Finally, we directly measure the FWHM size of the nuclear CLR as traced by the [CaVIII] and narrow Br$gamma$ line. We find a FWHM size of 2.2 mas (0.4 pc), fully in line with the expectation of the CLR located between the BLR and narrow line region. Combining all of these measurements together with larger scale near-IR integral field unit and mid-IR interferometry data, we are able to comprehensively map the structure and dynamics of gas and dust from 0.01--100 pc.
The GRAVITY instrument on the ESO VLTI pioneers the field of high-precision near-infrared interferometry by providing astrometry at the $10 - 100,mu$as level. Measurements at such high precision crucially depend on the control of systematic effects. Here, we investigate how aberrations introduced by small optical imperfections along the path from the telescope to the detector affect the astrometry. We develop an analytical model that describes the impact of such aberrations on the measurement of complex visibilities. Our formalism accounts for pupil-plane and focal-plane aberrations, as well as for the interplay between static and turbulent aberrations, and successfully reproduces calibration measurements of a binary star. The Galactic Center observations with GRAVITY in 2017 and 2018, when both Sgr A* and the star S2 were targeted in a single fiber pointing, are affected by these aberrations at a level of less than 0.5 mas. Removal of these effects brings the measurement in harmony with the dual beam observations of 2019 and 2020, which are not affected by these aberrations. This also resolves the small systematic discrepancies between the derived distance $R_0$ to the Galactic Center reported previously.
The spin of the supermassive black hole that resides at the Galactic Centre can in principle be measured by accurate measurements of the orbits of stars that are much closer to SgrA* than S2, the orbit of which recently provided the measurement of th e gravitational redshift and the Schwarzschild precession. The GRAVITY near-infrared interferometric instrument combining the four 8m telescopes of the VLT provides a spatial resolution of 2-4 mas, breaking the confusion barrier for adaptive-optics-assisted imaging with a single 8-10m telescope. We used GRAVITY to observe SgrA* over a period of six months in 2019 and employed interferometric reconstruction methods developed in radio astronomy to search for faint objects near SgrA*. This revealed a slowly moving star of magnitude 18.9 in K band within 30mas of SgrA*. The position and proper motion of the star are consistent with the previously known star S62, which is at a substantially larger physical distance, but in projection passes close to SgrA*. Observations in August and September 2019 easily detected S29, with K-magnitude of 16.6, at approximately 130 mas from SgrA*. The planned upgrades of GRAVITY, and further improvements in the calibration, hold the promise of finding stars fainter than magnitude 19 at K.
We present new near-infrared VLTI/GRAVITY interferometric spectra that spatially resolve the broad Br$gamma$ emission line in the nucleus of the active galaxy IRAS 09149-6206. We use these data to measure the size of the broad line region (BLR) and e stimate the mass of the central black hole. Using an improved phase calibration method that reduces the differential phase uncertainty to 0.05 degree per baseline across the spectrum, we detect a differential phase signal that reaches a maximum of ~0.5 degree between the line and continuum. This represents an offset of ~120 $mu$as (0.14 pc) between the BLR and the centroid of the hot dust distribution traced by the 2.3 $mu$m continuum. The offset is well within the dust sublimation region, which matches the measured ~0.6 mas (0.7 pc) diameter of the continuum. A clear velocity gradient, almost perpendicular to the offset, is traced by the reconstructed photocentres of the spectral channels of the Br$gamma$ line. We infer the radius of the BLR to be ~65 $mu$as (0.075 pc), which is consistent with the radius-luminosity relation of nearby active galactic nuclei derived based on the time lag of the H$beta$ line from reverberation mapping campaigns. Our dynamical modelling indicates the black hole mass is $sim 1times10^8,M_odot$, which is a little below, but consistent with, the standard $M_{rm BH}$-$sigma_*$ relation.
The star S2 orbiting the compact radio source Sgr A* is a precision probe of the gravitational field around the closest massive black hole (candidate). Over the last 2.7 decades we have monitored the stars radial velocity and motion on the sky, mainl y with the SINFONI and NACO adaptive optics (AO) instruments on the ESO VLT, and since 2017, with the four-telescope interferometric beam combiner instrument GRAVITY. In this paper we report the first detection of the General Relativity (GR) Schwarzschild Precession (SP) in S2s orbit. Owing to its highly elliptical orbit (e = 0.88), S2s SP is mainly a kink between the pre-and post-pericentre directions of motion ~ +- 1 year around pericentre passage, relative to the corresponding Kepler orbit. The superb 2017-2019 astrometry of GRAVITY defines the pericentre passage and outgoing direction. The incoming direction is anchored by 118 NACO-AO measurements of S2s position in the infrared reference frame, with an additional 75 direct measurements of the S2-Sgr A* separation during bright states (flares) of Sgr A*. Our 14-parameter model fits for the distance, central mass, the position and motion of the reference frame of the AO astrometry relative to the mass, the six parameters of the orbit, as well as a dimensionless parameter f_SP for the SP (f_SP = 0 for Newton and 1 for GR). From data up to the end of 2019 we robustly detect the SP of S2, del phi = 12 per orbital period. From posterior fitting and MCMC Bayesian analysis with different weighting schemes and bootstrapping we find f_SP = 1.10 +- 0.19. The S2 data are fully consistent with GR. Any extended mass inside S2s orbit cannot exceed ~ 0.1% of the central mass. Any compact third mass inside the central arcsecond must be less than about 1000 M_sun.
The Galactic Center black hole Sagittarius A* is a variable NIR source that exhibits bright flux excursions called flares. The low-flux density turnover of the flux distribution is below the sensitivity of current single-aperture telescopes. We use t he unprecedented resolution of the GRAVITY instrument at the VLTI. Our light curves are unconfused, overcoming the confusion limit of previous photometric studies. We analyze the light curves using standard statistical methods and obtain the flux distribution. We find that the flux distribution of SgrA* turns over at a median flux density of (1.1pm0.3)mJy. We measure the percentiles of the flux distribution and use them to constrain the NIR K-band SED. Furthermore, we find that the flux distribution is intrinsically right-skewed to higher flux density in log space. Flux densities below 0.1mJy are hardly ever observed. In consequence, a single powerlaw or lognormal distribution does not suffice to describe the observed flux distribution in its entirety. However, if one takes into account a power law component at high flux densities, a lognormal distribution can describe the lower end of the observed flux distribution. We confirm the RMS-flux relation for Sgr~A* and find it to be linear for all flux densities in our observation. We conclude that Sgr~A* has two states: the bulk of the emission is generated in a lognormal process with a well-defined median flux density and this quiescent emission is supplemented by sporadic flares that create the observed power law extension of the flux distribution.
We present a 0.16% precise and 0.27% accurate determination of R0, the distance to the Galactic Center. Our measurement uses the star S2 on its 16-year orbit around the massive black hole Sgr A* that we followed astrometrically and spectroscopically for 27 years. Since 2017, we added near-infrared interferometry with the VLTI beam combiner GRAVITY, yielding a direct measurement of the separation vector between S2 and Sgr A* with an accuracy as good as 20 micro-arcsec in the best cases. S2 passed the pericenter of its highly eccentric orbit in May 2018, and we followed the passage with dense sampling throughout the year. Together with our spectroscopy, in the best cases with an error of 7 km/s, this yields a geometric distance estimate: R0 = 8178 +- 13(stat.) +- 22(sys.) pc. This work updates our previous publication in which we reported the first detection of the gravitational redshift in the S2 data. The redshift term is now detected with a significance level of 20 sigma with f_redshift = 1.04 +- 0.05.
We report the detection of continuous positional and polarization changes of the compact source SgrA* in high states (flares) of its variable near- infrared emission with the near-infrared GRAVITY-Very Large Telescope Interferometer (VLTI) beam-combi ning instrument. In three prominent bright flares, the position centroids exhibit clockwise looped motion on the sky, on scales of typically 150 micro-arcseconds over a few tens of minutes, corresponding to about 30% the speed of light. At the same time, the flares exhibit continuous rotation of the polarization angle, with about the same 45(+/-15)-minute period as that of the centroid motions. Modelling with relativistic ray tracing shows that these findings are all consistent with a near face-on, circular orbit of a compact polarized hot spot of infrared synchrotron emission at approximately six to ten times the gravitational radius of a black hole of 4 million solar masses. This corresponds to the region just outside the innermost, stable, prograde circular orbit (ISCO) of a Schwarzschild-Kerr black hole, or near the retrograde ISCO of a highly spun-up Kerr hole. The polarization signature is consistent with orbital motion in a strong poloidal magnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا