ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*

73   0   0.0 ( 0 )
 نشر من قبل Oliver Pfuhl
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of continuous positional and polarization changes of the compact source SgrA* in high states (flares) of its variable near- infrared emission with the near-infrared GRAVITY-Very Large Telescope Interferometer (VLTI) beam-combining instrument. In three prominent bright flares, the position centroids exhibit clockwise looped motion on the sky, on scales of typically 150 micro-arcseconds over a few tens of minutes, corresponding to about 30% the speed of light. At the same time, the flares exhibit continuous rotation of the polarization angle, with about the same 45(+/-15)-minute period as that of the centroid motions. Modelling with relativistic ray tracing shows that these findings are all consistent with a near face-on, circular orbit of a compact polarized hot spot of infrared synchrotron emission at approximately six to ten times the gravitational radius of a black hole of 4 million solar masses. This corresponds to the region just outside the innermost, stable, prograde circular orbit (ISCO) of a Schwarzschild-Kerr black hole, or near the retrograde ISCO of a highly spun-up Kerr hole. The polarization signature is consistent with orbital motion in a strong poloidal magnetic field.



قيم البحث

اقرأ أيضاً

We consider the escape probability of a photon emitted from the innermost stable circular orbit (ISCO) of a rapidly rotating black hole. As an isotropically emitting light source on a circular orbit reduces its orbital radius, the escape probability of a photon emitted from it decreases monotonically. The escape probability evaluated at the ISCO also decreases monotonically as the black hole spin increases. When the dimensionless Kerr parameter $a$ is at the Thorne limit $a=0.998$, the escape probability from the ISCO is $58.8%$. In the extremal case $a=1$, even if the orbital radius of the light source is arbitrarily close to the ISCO radius, which coincides with the horizon radius, the escape probability remains at $54.6%$. We also show that such photons that have escaped from the vicinity of the horizon reach infinity with sufficient energy to be potentially observed because Doppler blueshift due to relativistic beaming can overcome the gravitational redshift. Our findings indicate that signs of the near-horizon physics of a rapidly rotating black hole will be detectable on the edge of its shadow.
The star S2 orbiting the compact radio source Sgr A* is a precision probe of the gravitational field around the closest massive black hole (candidate). Over the last 2.7 decades we have monitored the stars radial velocity and motion on the sky, mainl y with the SINFONI and NACO adaptive optics (AO) instruments on the ESO VLT, and since 2017, with the four-telescope interferometric beam combiner instrument GRAVITY. In this paper we report the first detection of the General Relativity (GR) Schwarzschild Precession (SP) in S2s orbit. Owing to its highly elliptical orbit (e = 0.88), S2s SP is mainly a kink between the pre-and post-pericentre directions of motion ~ +- 1 year around pericentre passage, relative to the corresponding Kepler orbit. The superb 2017-2019 astrometry of GRAVITY defines the pericentre passage and outgoing direction. The incoming direction is anchored by 118 NACO-AO measurements of S2s position in the infrared reference frame, with an additional 75 direct measurements of the S2-Sgr A* separation during bright states (flares) of Sgr A*. Our 14-parameter model fits for the distance, central mass, the position and motion of the reference frame of the AO astrometry relative to the mass, the six parameters of the orbit, as well as a dimensionless parameter f_SP for the SP (f_SP = 0 for Newton and 1 for GR). From data up to the end of 2019 we robustly detect the SP of S2, del phi = 12 per orbital period. From posterior fitting and MCMC Bayesian analysis with different weighting schemes and bootstrapping we find f_SP = 1.10 +- 0.19. The S2 data are fully consistent with GR. Any extended mass inside S2s orbit cannot exceed ~ 0.1% of the central mass. Any compact third mass inside the central arcsecond must be less than about 1000 M_sun.
The highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A* is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU, ~1400 Schwarzschild radii, the star has an or bital speed of ~7650 km/s, such that the first-order effects of Special and General Relativity have now become detectable with current capabilities. Over the past 26 years, we have monitored the radial velocity and motion on the sky of S2, mainly with the SINFONI and NACO adaptive optics instruments on the ESO Very Large Telescope, and since 2016 and leading up to the pericentre approach in May 2018, with the four-telescope interferometric beam-combiner instrument GRAVITY. From data up to and including pericentre, we robustly detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z ~ 200 km/s / c with different statistical analysis methods. When parameterising the post-Newtonian contribution from these effects by a factor f, with f = 0 and f = 1 corresponding to the Newtonian and general relativistic limits, respectively, we find from posterior fitting with different weighting schemes f = 0.90 +/- 0.09 (stat) +- 0.15 (sys). The S2 data are inconsistent with pure Newtonian dynamics.
We compute the radiation emitted by a particle on the innermost stable circular orbit of a rapidly spinning black hole both (a) analytically, working to leading order in the deviation from extremality and (b) numerically, with a new high-precision Te ukolsky code. We find excellent agreement between the two methods. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight, a quantity that arises naturally in the representation theory of the enhanced near-horizon symmetry group. We find relationships to previous work on particles orbiting in precisely extreme Kerr, including detailed agreement of quantities computed here with conformal field theory calculations performed in the context of the Kerr/CFT correspondence.
142 - P. Abolmasov 2014
If accretion disc contains weak frozen-in entangled magnetic fields, their dynamical effect may be important inside the last stable orbit because of the decompression near the sonic point. Here, I consider the radial and vertical structure of a nearl y free-falling flow inside the last stable orbit of a thin disc around a Kerr black hole. The thickness of such a flow is determined primarily by the vertical stress created by radial and azimuthal magnetic fields. The thickness is predicted to oscillate vertically around its equilibrium value determined by the magnetic field balance with gravity. For thin discs, this thickness is much larger than that of the accretion disc itself. Numerical simulations with HARM2d show the vertical structure is more complicated. In particular, magnetically supported disc seems to be unstable to segregation of matter into thinner streams with the vertical scale determined by thermal pressure or other processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا