ترغب بنشر مسار تعليمي؟ اضغط هنا

The central parsec of NGC 3783: a rotating broad emission line region, asymmetric hot dust structure, and compact coronal line region

77   0   0.0 ( 0 )
 نشر من قبل T. Taro Shimizu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using VLTI/GRAVITY and SINFONI data, we investigate the sub-pc gas and dust structure around the nearby type 1 AGN hosted by NGC 3783. The K-band coverage of GRAVITY uniquely allows a simultaneous analysis of the size and kinematics of the broad line region (BLR), the size and structure of the near-IR continuum emitting hot dust, and the size of the coronal line region (CLR). We find the BLR probed through broad Br$gamma$ emission is well described by a rotating, thick disk with a radial distribution of clouds peaking in the inner region. In our BLR model the physical mean radius of 16 light days is nearly twice the 10 day time lag that would be measured, which matches very well the 10 day time lag that has been measured by reverberation mapping. We measure a hot dust FWHM size of 0.74 mas (0.14 pc) and further reconstruct an image of the hot dust which reveals a faint (5% of the total flux) offset cloud which we interpret as an accreting cloud heated by the central AGN. Finally, we directly measure the FWHM size of the nuclear CLR as traced by the [CaVIII] and narrow Br$gamma$ line. We find a FWHM size of 2.2 mas (0.4 pc), fully in line with the expectation of the CLR located between the BLR and narrow line region. Combining all of these measurements together with larger scale near-IR integral field unit and mid-IR interferometry data, we are able to comprehensively map the structure and dynamics of gas and dust from 0.01--100 pc.



قيم البحث

اقرأ أيضاً

We present the first extensive study of the coronal line variability in an active galaxy. Our data set for the nearby source NGC 4151 consists of six epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about eight years and five epochs of X-ray spectroscopy overlapping in time with it. None of the coronal lines showed the variability behaviour observed for the broad emission lines and hot dust emission. In general, the coronal lines varied only weakly, if at all. Using the optical [Fe VII] and X-ray O VII emission lines we estimate that the coronal line gas has a relatively low density of n~10^3 cm^-3 and a relatively high ionisation parameter of log U~1. The resultant distance of the coronal line gas from the ionising source is about two light years, which puts this region well beyond the hot inner face of the obscuring dusty torus. The high ionisation parameter implies that the coronal line region is an independent entity rather than part of a continuous gas distribution connecting the broad and narrow emission line regions. We present tentative evidence for the X-ray heated wind scenario of Pier & Voit. We find that the increased ionising radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion.
We have modeled the full velocity-resolved reverberation response of the H$beta$ and He II optical broad emission lines in NGC 3783 to constrain the geometry and kinematics of the low-ionization and high-ionization broad line region. The geometry is found to be a thick disk that is nearly face on, inclined at $sim 18^{circ}$ to our line of sight, and exhibiting clear ionization stratification, with an extended H$beta$-emitting region ($r_{rm median}=10.07^{+1.10}_{-1.12}$ light days) and a more compact and centrally-located He II-emitting region ($r_{rm median}=1.33^{+0.34}_{-0.42}$ light days). In the H$beta$-emitting region, the kinematics are dominated by near-circular Keplerian orbits, but with $sim 40$% of the orbits inflowing. The more compact He II-emitting region, on the other hand, appears to be dominated by outflowing orbits. The black hole mass is constrained to be $M_{rm BH}=2.82^{+1.55}_{-0.63}times10^7$ $M_{odot}$, which is consistent with the simple reverberation constraint on the mass based on a mean time delay, line width, and scale factor of $langle f rangle=4.82$. The difference in kinematics between the H$beta$- and He II-emitting regions of the BLR is intriguing given the recent history of large changes in the ionizing luminosity of NGC 3783 and evidence for possible changes in the BLR structure as a result.
Optical and near-mid-infrared reverberation mapping data obtained at Universit{a}tssternwarte Bochum in Chile and with the Spitzer Space Telescope allow us to explore the geometry of both the H$alpha$ BLR and the dust torus for the nearby Seyfert 1 g alaxy WPVS,48. On average, the H$alpha$ variations lag the blue AGN continuum by about 18 days, while the dust emission variations lag by 70 days in the J+K and by 90 days in the L+M bands. The IR echoes are sharp, while the H$alpha$ echo is smeared. This together favours a bowl-shaped toroidal geometry where the dust sublimation radius is defined by a bowl surface, which is virtually aligned with a single iso-delay surface, thus leading to the sharp IR echoes. The BLR clouds, however, are located inside the bowl and spread over a range of iso-delay surfaces, leading to a smeared echo.
272 - Hermine Landt 2015
We present the second extensive study of the coronal line variability in an active galaxy. Our data set for the well-studied Seyfert galaxy NGC 5548 consists of five epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a perio d of about five years and three epochs of X-ray spectroscopy overlapping in time with it. Whereas the broad emission lines and hot dust emission varied only moderately, the coronal lines varied strongly. However, the observed high variability is mainly due to a flux decrease. Using the optical [FeVII] and X-ray OVII emission lines we estimate that the coronal line gas has a relatively low density of n~10^3/cm^3 and a relatively high ionisation parameter of log U~1. The resultant distance of the coronal line gas from the ionising source of about eight light years places this region well beyond the hot inner face of the dusty torus. These results imply that the coronal line region is an independent entity. We find again support for the X-ray heated wind scenario of Pier & Voit; the increased ionising radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion. The much stronger coronal line variability of NGC 5548 relative to that of NGC 4151 can also be explained within this picture. NGC 5548 has much stronger coronal lines relative to the low ionisation lines than NGC 4151 indicating a stronger wind, in which case a stronger adiabatic expansion of the gas and so fading of the line emission is expected.
We demonstrate a new technique for determining the physical conditions of the broad line emitting gas in quasars, using near-infrared hydrogen emission lines. Unlike higher ionisation species, hydrogen is an efficient line emitter for a very wide ran ge of photoionisation conditions, and the observed line ratios depend strongly on the density and photoionisation state of the gas present. A locally optimally emitting cloud model of the broad emission line region was compared to measured emission lines of four nearby ($zapprox0.2$) quasars that have optical and NIR spectra of sufficient signal-to-noise to measure their Paschen lines. The model provides a good fit to three of the objects, and a fair fit to the fourth object, a ULIRG. We find that low incident ionising fluxes ($phih<10^{18}$cmsqs), and high gas densities ($ h>10^{12}$cmcu) are required to reproduce the observed hydrogen emission line ratios. This analysis demonstrates that the use of composite spectra in photoionisation modelling is inappropriate; models must be fitted to the individual spectra of quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا