أدى دخول الحاسب إلى العديد من المجالات, كالمجال الطبي, إلى تطوير تقنيات جديدة أدت إلى ازدهار هذه المجالات, مما ساعد الأطباء في كشف و تشخيص الأمراض بدقة و مصداقية, حيث تؤدي خبرة الطبيب بالإضافة إلى دقة الحاسب للوصول إلى مصداقية تشخيص عالية كما تساهم ب
شكل كبير في نجاح الجراحات العلاجية و إنقاذ كثير من الأرواح .
يهدف البحث إلى اقتراح طريقة جديدة لاكتشاف و تصنيف أمراض القلب في صور إشارات ECG و ذلك باستخدام نظام الاستدلال العصبي الضبابي المتكيف ANFIS.
تم تطبيق الطريقة المقترحة على قاعدة بيانات لصور إشارات ECG تتكون من 147 صورة تصاحبت كل منها مع التقرير الطبي المرافق, حيث استخدمت التقارير الطبية للتحقق من صحة الاكتشاف و التصنيف و قد حققت هذه الطريقة دقة عالية وصلت حتى 97% في عملية الاكتشاف و التصنيف.
تم بناء النظام المقترح باستخدام برنامج MATLAB و ذلك بالاعتماد على كل من مكتبات معالجة الصورة
و الشبكات العصبية و المنطق الضبابي.
تعاني خدمة الطاقة الكهربائية في الجمهورية العربية السورية من العديد من الصعوبات الناتجة عن نقص الموارد (الفيول) بالإضافة إلى التخريب الذي تعرضت له العديد من مراكز التوليد من قبل المجموعات الإرهابية، ترافق ذلك مع حصار جائر تعرضت له بلدنا أدى إلى تخفيض
كميات وقود التشغيل الذي تزود به محطات التوليد, وقد تسبب كل ماسبق إلى تطبيق برامج التقنين في المحافظات وفقاً لاستهلاك تلك المحافظات ومراكز الإنتاج الموجودة فيها (مصانع، مراكز ضخ، مستشفيات وعدد السكان).
كما يتطلب التنبؤ باستهلاك الطاقة الكهربائية معرفة كميات الاستهلاك اليومية وأوقات الاستهلاك وغيرها من العوامل المؤثرة والتي تشكل كميات كبيرة من البيانات [1]. ولا يزال التنبؤ الدقيق بالحمل الكهربائي يمثل مهمة صعبة بسبب العديد من المشاكل مثل الطابع غير الخطي للسلسلة الزمنية أو الأنماط الموسمية التي يعرضها، والتي تستغرق وقتاً كبيراً كما تؤثر على دقة الأداء في التنبؤ. يمكن تحسين العملية باستخدام شبكاتRNN . [2] بدايةً، تم تحديد الاستهلاك المثالي والمناسب للمنطقة ومقارنته مع الانتاج وإمكانية تمرير الفائض لعمليات احتياطية أخرى أو تزويد مراكز الانتاج بالفائض الذي يمكن الحصول عليه من خلال عملية التنبؤ السابقة.
كما تم استخدام الشبكات العصبية التكرارية RNN (Recurrent Neural Network) وهي عبارة عن سلاسل زمنية تعتمد على تسلسل البيانات وفقاً لدلائل زمنية وقدرتها على التنبؤ بالقيم المستقبلية اعتماداً على البيانات السابقة. ثم تم مقارنة أداء تلك الشبكات مع شبكات DNN (Dense Neural Network) للحصول على تنبؤ مستقبلي أمثل قابل لخدمة وزارة الكهرباء في الجمهورية العربية السورية وحل مشكلة التنبؤ بالحمل الكهربائي بالمقارنة مع الدراسات السابقة.
تم أيضاً اعتماد طريقة التقسيم المتتالي القائم على الوقت، والتي لها القدرة على العمل بصورة أعلى دقة بالنسبة للبيانات ذات العينات العشوائية. وبالنسبة لحالات انخفاض تنظيم البيانات الساعية لاستهلاك القدرة الكهربائية، يمكن لنا أخذ عينات لمجموعة من البيانات بالنسبة للزمن وأخذ 20 بالمئة من البيانات على سبيل المثال كعينات تدريب واختبار.
بناءً على قيم التنبؤ الناتجة عن هذه الدراسة يتم العمل على توزيع الطاقة الكهربائية بالشكل الأنسب وبما يتوافق مع أهمية الاستخدام الأعلى.