الخلاف بين المبرمجين هو في كل مكان في جميع مجموعات البيانات المشروحة بأحكام بشرية في كل من معالجة اللغة الطبيعية ورؤية الكمبيوتر.ومع ذلك، تفترض معظم أساليب تعلم الآلات الأكثر إشرافا أن التفسير المفضل الوحيد موجود لكل عنصر، وهو في أحسن الأحوال مثالية.كان الهدف من مهمة Semeval-2021 المشتركة بشأن التعلم مع الخلافات (LE-WI-I-DI) هو توفير إطار اختبار موحد لأساليب التعلم من البيانات التي تحتوي على شروح متعددة وربما متناقضة تغطي مجموعات البيانات الأكثر شهرة التي تحتوي على معلومات حول الخلافاتتفسير اللغة وتصنيف الصور.في هذه الورقة وصفنا المهمة المشتركة ونتائجها.
Disagreement between coders is ubiquitous in virtually all datasets annotated with human judgements in both natural language processing and computer vision. However, most supervised machine learning methods assume that a single preferred interpretation exists for each item, which is at best an idealization. The aim of the SemEval-2021 shared task on learning with disagreements (Le-Wi-Di) was to provide a unified testing framework for methods for learning from data containing multiple and possibly contradictory annotations covering the best-known datasets containing information about disagreements for interpreting language and classifying images. In this paper we describe the shared task and its results.
References used
https://aclanthology.org/
Crowdsourcing has been ubiquitously used for annotating enormous collections of data. However, the major obstacles to using crowd-sourced labels are noise and errors from non-expert annotations. In this work, two approaches dealing with the noise and
Among the tasks motivated by the proliferation of misinformation, propaganda detection is particularly challenging due to the deficit of fine-grained manual annotations required to train machine learning models. Here we show how data from other relat
Tables are widely used in various kinds of documents to present information concisely. Understanding tables is a challenging problem that requires an understanding of language and table structure, along with numerical and logical reasoning. In this p
We describe our systems of subtask1 and subtask3 for SemEval-2021 Task 6 on Detection of Persuasion Techniques in Texts and Images. The purpose of subtask1 is to identify propaganda techniques given textual content, and the goal of subtask3 is to det
This paper presents the GX system for the Multilingual and Cross-lingual Word-in-Context Disambiguation (MCL-WiC) task. The purpose of the MCL-WiC task is to tackle the challenge of capturing the polysemous nature of words without relying on a fixed