No Arabic abstract
Conventional Josephson metal-insulator-metal devices are inherently underdamped and exhibit hysteretic current-voltage response due to a very high subgap resistance compared to that in the normal state. At the same time, overdamped junctions with single-valued characteristics are needed for most superconducting digital applications. The usual way to overcome the hysteretic behavior is to place an external low-resistance normal-metal shunt in parallel with each junction. Unfortunately, such solution results in a considerable complication of the circuitry design and introduces parasitic inductance through the junction. This paper provides a concise overview of some generic approaches that have been proposed in order to realize internal shunting in Josephson heterostructures with a barrier that itself contains the desired resistive component. The main attention is paid to self-shunted devices with local weak-link transmission probabilities so strongly disordered in the interface plane that transmission probabilities are tiny for the main part of the transition region between two superconducting electrodes, while a small part of the interface is well transparent. We consider the possibility of realizing a universal bimodal distribution function and emphasize advantages of such junctions that can be considered as a new class of self-shunted Josephson devices promising for practical applications in superconducting electronics operating at 4.2 K.
Recent progress in superconductor electronics fabrication has enabled single-flux-quantum (SFQ) digital circuits with close to one million Josephson junctions (JJs) on 1-cm$^2$ chips. Increasing the integration scale further is challenging because of the large area of SFQ logic cells, mainly determined by the area of resistively shunted Nb/AlO$_x$-Al/Nb JJs and geometrical inductors utilizing multiple layers of Nb. To overcome these challenges, we are developing a fabrication process with self-shunted high-J$_c$ JJs and compact thin-film MoN$_x$ kinetic inductors instead of geometrical inductors. We present fabrication details and properties of MoN$_x$ films with a wide range of T$_c$, including residual stress, electrical resistivity, critical current, and magnetic field penetration depth {lambda}$_0$. As kinetic inductors, we implemented Mo$_2$N films with T$_c$ about 8 K, {lambda}$_0$ about 0.51 {mu}m, and inductance adjustable in the range from 2 to 8 pH/sq. We also present data on fabrication and electrical characterization of Nb-based self-shunted JJs with AlO$_x$ tunnel barriers and J$_c$ = 0.6 mA/{mu}m$^2$, and with 10-nm thick Si$_{1-x}$Nb$_x$ barriers, with x from 0.03 to 0.15, fabricated on 200-mm wafers by co-sputtering. We demonstrate that the electron transport mechanism in Si$_{1-x}$Nb$_x$ barriers at x < 0.08 is inelastic resonant tunneling via chains of multiple localized states. At larger x, their Josephson characteristics are strongly dependent on x and residual stress in Nb electrodes, and in general are inferior to AlO$_x$ tunnel barriers.
We present a cluster algorithm for resistively shunted Josephson junctions and similar physical systems, which dramatically improves sampling efficiency. The algorithm combines local updates in Fourier space with rejection-free cluster updates which exploit the symmetries of the Josephson coupling energy. As an application, we consider the localization transition of a single junction at intermediate Josephson coupling and determine the temperature dependence of the zero bias resistance as a function of dissipation strength.
In this work we give a characterization of the RF effect of memory switching on Nb-Al/AlOx-(Nb)-Pd$_{0.99}$Fe$_{0.01}$-Nb Josephson junctions as a function of magnetic field pulse amplitude and duration, alongside with an electrodynamical characterization of such junctions, in comparison with standard Nb-Al/AlOx-Nb tunnel junctions. The use of microwaves to tune the switching parameters of magnetic Josephson junctions is a step in the development of novel addressing schemes aimed at improving the performances of superconducting memories.
We report the electrical transport in vertical Josephson tunnel junctions (area 400 $mu m$$^2$) using GdBa$_2$Cu$_3$O$_7$$_{-delta}$ electrodes and SrTiO$_3$ as an insulating barrier (with thicknesses between 1 nm and 4 nm). The results show Josephson coupling for junctions with SrTiO$_3$ barriers of 1 nm and 2 nm. The latter displays a Josephson of 8.9 mV at 12 K. This value is larger than the usually observed in planar arrays of junctions. Our results are promising for the development of superconducting electronic devices in the terahertz regime.
Using a new cluster Monte Carlo algorithm, we study the phase diagram and critical properties of an interacting pair of resistively shunted Josephson junctions. This system models tunneling between two electrodes through a small superconducting grain, and is described by a double sine-Gordon model. In accordance with theoretical predictions, we observe three different phases and crossover effects arising from an intermediate coupling fixed point. On the superconductor-to-metal phase boundary, the observed critical behavior is within error-bars the same as in a single junction, with identical values of the critical resistance and a correlation function exponent which depends only on the strength of the Josephson coupling. We explain these critical properties on the basis of a renormalization group (RG) calculation. In addition, we propose an alternative new mean-field theory for this transition, which correctly predicts the location of the phase boundary at intermediate Josephson coupling strength.