Do you want to publish a course? Click here

Properties of ferromagnetic Josephson junctions for memory applications

92   0   0.0 ( 0 )
 Added by Roberta Caruso
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we give a characterization of the RF effect of memory switching on Nb-Al/AlOx-(Nb)-Pd$_{0.99}$Fe$_{0.01}$-Nb Josephson junctions as a function of magnetic field pulse amplitude and duration, alongside with an electrodynamical characterization of such junctions, in comparison with standard Nb-Al/AlOx-Nb tunnel junctions. The use of microwaves to tune the switching parameters of magnetic Josephson junctions is a step in the development of novel addressing schemes aimed at improving the performances of superconducting memories.



rate research

Read More

Josephson junctions containing ferromagnetic materials have attracted intense interest both because of their unusual physical properties and because they have potential application for cryogenic memory. There are two ways to store information in such a junction: either in the amplitude of the critical current or in the ground-state phase difference across the junction; the latter is the topic of this paper. We have recently demonstrated two different ways to achieve phase control in such junctions: the first uses junctions containing two magnetic layers in a pseudo spin valve configuration, while the second uses junctions containing three magnetic layers with non-collinear magnetizations. The demonstration devices, however, have not yet been optimized for use in a large-scale cryogenic memory array. In this paper we outline some of the issues that must be considered to perform such an optimization, and we provide a speculative phase-diagram for the nickel-permalloy spin-valve system showing which combinations of ferromagnetic layer thicknesses should produce useful devices.
We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We formulate a quantitative model describing the oscillations of critical current as a function of thickness of the ferromagnetic layer and use this model to fit recent experimental data. We also calculate quantitatively the density of states (DOS) in this type of junctions and compare DOS oscillations with those of the critical current.
We present a study on low-$T_c$ superconductor-insulator-ferromagnet-superconductor (SIFS) Josephson junctions. SIFS junctions have gained considerable interest in recent years because they show a number of interesting properties for future classical and quantum computing devices. We optimized the fabrication process of these junctions to achieve a homogeneous current transport, ending up with high-quality samples. Depending on the thickness of the ferromagnetic layer and on temperature, the SIFS junctions are in the ground state with a phase drop either 0 or $pi$. By using a ferromagnetic layer with variable step-like thickness along the junction, we obtained a so-called 0-$pi$ Josephson junction, in which 0 and $pi$ ground states compete with each other. At a certain temperature the 0 and $pi$ parts of the junction are perfectly symmetric, i.e. the absolute critical current densities are equal. In this case the degenerate ground state corresponds to a vortex of supercurrent circulating clock- or counterclockwise and creating a magnetic flux which carries a fraction of the magnetic flux quantum $Phi_0$.
Josephson junctions containing ferromagnetic layers have generated interest for application in cryogenic memory. In a junction containing both a magnetically hard fixed layer and soft free layer with carefully chosen thicknesses, the ground-state phase difference of the junction can be controllably switched between 0 and {pi} by changing the relative orientation of the two ferromagnetic layers from antiparallel to parallel. This phase switching has been observed in junctions using Ni fixed layers and NiFe free layers. We present phase-sensitive measurements of such junctions in low-inductance symmetric SQUID loops which simplify analysis relative to our previous work. We confirm controllable 0 - {pi} switching in junctions with 2.0 nm Ni fixed layers and 1.25 nm NiFe free layers across multiple devices and using two SQUID designs, expanding the phase diagram of known thicknesses that permit phase control.
Josephson junctions containing two ferromagnetic layers are being considered for use in cryogenic memory. Our group recently demonstrated that the ground-state phase difference across such a junction with carefully chosen layer thicknesses could be controllably toggled between zero and $pi$ by switching the relative magnetization directions of the two layers between the antiparallel and parallel configurations. However, several technological issues must be addressed before those junctions can be used in a large-scale memory. Many of these issues can be more easily studied in single junctions, rather than in the Superconducting QUantum Interference Device (SQUID) used for the phase-sensitive measurements. In this work, we report a comprehensive study of spin-valve junctions containing a Ni layer with a fixed thickness of 2.0 nm, and a NiFe layer of thickness varying between 1.1 and 1.8 nm in steps of 0.1 nm. We extract the field shift of the Fraunhofer patterns and the critical currents of the junctions in the parallel and antiparallel magnetic states, as well as the switching fields of both magnetic layers. We also report a partial study of similar junctions containing a slightly thinner Ni layer of 1.6 nm and the same range of NiFe thicknesses. These results represent the first step toward mapping out a ``phase diagram for phase-controllable spin-valve Josephson junctions as a function of the two magnetic layer thicknesses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا