No Arabic abstract
We study real-space quantum entanglement included in conformally invariant boundary states in conformal field theories (CFTs). First, we argue that boundary states essentially have no real-space entanglement by computing the entanglement entropy when we bipartite the system into two spatial regions. From the viewpoint of holography, this shows that boundary states are dual to trivial spacetimes of zero spactime volume. Next, we point out that a continuous multiscale entanglement renormalization ansatz (cMERA) for any CFTs can be formulated by employing a boundary state as its infrared unentangled state with an appropriate regularization. Exploiting this idea, we propose an approximation scheme of cMERA construction for general CFTs.
We formulate a theory of dissipative hydrodynamics with spontaneously broken translations, describing charge density waves in a clean isotropic electronic crystal. We identify a novel linear transport coefficient, lattice pressure, capturing the effects of background strain and thermal expansion in a crystal. We argue that lattice pressure is a generic feature of systems with spontaneously broken translations and must be accounted for while building and interpreting holographic models. We also provide the first calculation of the coefficients of thermal and chemical expansion in a holographic electronic crystal.
We extend the holographic duality between 3d pure gravity and the 2d Ising CFT proposed in [Phys. Rev. D 85 (2012) 024032] to CFTs with boundaries. Besides the usual asymptotic boundary, the dual bulk spacetime now has a real cutoff, on which live branes with finite tension, giving Neumann boundary condition on the metric tensor. The strongly coupled bulk theory requires that we dress the well-known semiclassical AdS/BCFT answer with boundary gravitons, turning the partition function into the form of Virasoro characters. Using this duality, we relate the brane tensions to the modular S-matrix elements of the dual BCFT and derive the transformation between gravitational solutions with different brane tensions under modular S action.
A notable class of superconformal theories (SCFTs) in six dimensions is parameterized by an integer $N$, an ADE group $G$, and two nilpotent elements $mu_mathrm{L,R}$ in $G$. Nilpotent elements have a natural partial ordering, which has been conjectured to coincide with the hierarchy of renormalization-group flows among the SCFTs. In this paper we test this conjecture for $G=mathrm{SU}(k)$, where AdS$_7$ duals exist in IIA. We work with a seven-dimensional gauged supergravity, consisting of the gravity multiplet and two $mathrm{SU}(k)$ non-Abelian vector multiplets. We show that this theory has many supersymmetric AdS$_7$ vacua, determined by two nilpotent elements, which are naturally interpreted as IIA AdS$_7$ solutions. The BPS equations for domain walls connecting two such vacua can be solved analytically, up to a Nahm equation with certain boundary conditions. The latter admit a solution connecting two vacua if and only if the corresponding nilpotent elements are related by the natural partial ordering, in agreement with the field theory conjecture.
In this paper, we study a holographic dual of a confined fermi liquid state by putting a charged fluid of fermions in the AdS soliton geometry. This can be regarded as a confined analogue of electron stars. Depending on the parameters such as the mass and charge of the bulk fermion field, we found three different phase structures when we change the values of total charge density at zero temperature. In one of the three cases, our confined solution (called soliton star) is always stable and this solution approaches to the electron star away from the tip. In both the second and third case, we find a confinement/deconfinement phase transition. Moreover, in the third one, there is a strong indication that the soliton star decays into an inhomogeneous solution. We also analyze the probe fermion equations (in the WKB approximation) in the background of this soliton star geometry to confirm the presence of many fermi-surfaces in the system.
Motivated by the understanding of holography as realized in tensor networks, we develop a bulk procedure that can be interpreted as generating a sequence of coarse-grained holographic states. The coarse-graining procedure involves identifying degrees of freedom entangled at short distances and disentangling them. This is manifested in the bulk by a flow equation that generates a codimension-1 object, which we refer to as the holographic slice. We generalize the earlier classical construction to include bulk quantum corrections, which naturally involves the generalized entropy as a measure of the number of relevant boundary degrees of freedom. The semiclassical coarse-graining results in a flow that approaches quantum extremal surfaces such as entanglement islands that have appeared in discussions of the black hole information paradox. We also discuss the relation of the present picture to the view that the holographic dictionary works as quantum error correction.