Do you want to publish a course? Click here

Holographic duals of 6d RG flows

200   0   0.0 ( 0 )
 Added by Alessandra Gnecchi
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

A notable class of superconformal theories (SCFTs) in six dimensions is parameterized by an integer $N$, an ADE group $G$, and two nilpotent elements $mu_mathrm{L,R}$ in $G$. Nilpotent elements have a natural partial ordering, which has been conjectured to coincide with the hierarchy of renormalization-group flows among the SCFTs. In this paper we test this conjecture for $G=mathrm{SU}(k)$, where AdS$_7$ duals exist in IIA. We work with a seven-dimensional gauged supergravity, consisting of the gravity multiplet and two $mathrm{SU}(k)$ non-Abelian vector multiplets. We show that this theory has many supersymmetric AdS$_7$ vacua, determined by two nilpotent elements, which are naturally interpreted as IIA AdS$_7$ solutions. The BPS equations for domain walls connecting two such vacua can be solved analytically, up to a Nahm equation with certain boundary conditions. The latter admit a solution connecting two vacua if and only if the corresponding nilpotent elements are related by the natural partial ordering, in agreement with the field theory conjecture.



rate research

Read More

Motivated by its potential use in constraining the structure of 6D renormalization group flows, we determine the low energy dilaton-axion effective field theory of conformal and global symmetry breaking in 6D conformal field theories (CFTs). While our analysis is largely independent of supersymmetry, we also investigate the case of 6D superconformal field theories (SCFTs), where we use the effective action to present a streamlined proof of the 6D a-theorem for tensor branch flows, as well as to constrain properties of Higgs branch and mixed branch flows. An analysis of Higgs branch flows in some examples leads us to conjecture that in 6D SCFTs, an interacting dilaton effective theory may be possible even when certain 4-dilaton 4-derivative interaction terms vanish, because of large momentum modifications to 4-point dilaton scattering amplitudes. This possibility is due to the fact that in all known $D > 4$ CFTs, the approach to a conformal fixed point involves effective strings which are becoming tensionless.
Boundary, defect, and interface RG flows, as exemplified by the famous Kondo model, play a significant role in the theory of quantum fields. We study in detail the holographic dual of a non-conformal supersymmetric impurity in the D1/D5 CFT. Its RG flow bears similarities to the Kondo model, although unlike the Kondo model the CFT is strongly coupled in the holographic regime. The interface we study preserves $d = 1$ $mathcal{N} = 4$ supersymmetry and flows to conformal fixed points in both the UV and IR. The interfaces UV fixed point is described by $d = 1$ fermionic degrees of freedom, coupled to a gauge connection on the CFT target space that is induced by the ADHM construction. We briefly discuss its field-theoretic properties before shifting our focus to its holographic dual. We analyze the supergravity dual of this interface RG flow, first in the probe limit and then including gravitational backreaction. In the probe limit, the flow is realized by the puffing up of probe branes on an internal $mathsf{S}^3$ via the Myers effect. We further identify the backreacted supergravity configurations dual to the interface fixed points. These supergravity solutions provide a geometric realization of critical screening of the defect degrees of freedom. This critical screening arises in a way similar to the original Kondo model. We compute the $g$-factor both in the probe brane approximation and using backreacted supergravity solutions, and show that it decreases from the UV to the IR as required by the $g$-theorem.
We construct numerically finite density domain-wall solutions which interpolate between two $AdS_4$ fixed points and exhibit an intermediate regime of hyperscaling violation, with or without Lifshitz scaling. Such RG flows can be realized in gravitational models containing a dilatonic scalar and a massive vector field with appropriate choices of the scalar potential and couplings. The infrared $AdS_4$ fixed point describes a new ground state for strongly coupled quantum systems realizing such scalings, thus avoiding the well-known extensive zero temperature entropy associated with $AdS_2 times mathbb{R}^2$. We also examine the zero temperature behavior of the optical conductivity in these backgrounds and identify two scaling regimes before the UV CFT scaling is reached. The scaling of the conductivity is controlled by the emergent IR conformal symmetry at very low frequencies, and by the intermediate scaling regime at higher frequencies.
Axionic holographic RG flow solutions are studied in the context of general Einstein-Axion-Dilaton theories. A non-trivial axion profile is dual to the (non-perturbative) running of the $theta$-term for the corresponding instanton density operator. It is shown that a non-trivial axion solution is incompatible with a non-trivial (holographic) IR conformal fixed point. Imposing a suitable axion regularity condition allows to select the IR geometry in a unique way. The solutions are found analytically in the asymptotic UV and IR regimes, and it is shown that in those regimes the axion backreaction is always negligible. The axion backreaction may become important in the intermediate region of the bulk. To make contact with the axion probe limit solutions, a systematic expansion of the solution is developed. Several concrete examples are worked out numerically. It is shown that the regularity condition always implies a finite allowed range for the axion source parameter in the UV. This translates into the existence of a finite (but large) number of saddle-points in the large $N_c$ limit. This ties in well with axion-swampland conjectures.
We study the $qbar{q}$ potential in strongly coupled non-conformal field theories with a non-trivial renormalization group flow via holography. We focus on the properties of this potential at an inter-quark separation $L$ large compared to the characteristic scale of the field theory. These are determined by the leading order IR physics plus a series of corrections, sensitive to the properties of the RG-flow. To determine those corrections, we propose a general method applying holographic Wilsonian renormalization to a dual string. We apply this method to examine in detail two sets of examples, $3+1$-dimensional theories with an RG flow ending in an IR fixed point; and theories that are confining in the IR, in particular, the Witten QCD and Klebanov-Strassler models. In both cases, we find corrections with a universal dependence on the inter-quark separation. When there is an IR fixed point, that correction decays as a power $sim 1/L^4$. We explain that dependence in terms of a double-trace deformation in a one-dimensional defect theory. For a confining theory, the decay is exponential $sim e^{-ML}$, with $M$ a scale of the order of the glueball mass. We interpret this correction using an effective flux tube description as produced by a background internal mode excitation induced by sources localized at the endpoints of the flux tube. We discuss how these results could be confronted with lattice QCD data to test whether the description of confinement via the gauge/gravity is qualitatively correct.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا