No Arabic abstract
Using a new method--statefinder diagnostic which can differ one dark energy model from the others, we investigate in this letter the dynamics of Born-Infeld(B-I) type dark energy model. The evolutive trajectory of B-I type dark energy with Mexican hat potential model with respect to $e-folding$ time $N$ is shown in the $r(s)$ diagram. When the parameter of noncanonical kinetic energy term $etato0$ or kinetic energy $dot{phi}^2to0$, B-I type dark energy(K-essence) model reduces to Quintessence model or $Lambda$CDM model corresponding to the statefinder pair ${r, s}$=${1, 0}$ respectively. As a result, the the evolutive trajectory of our model in the $r(s)$ diagram in Mexican hat potential is quite different from those of other dark energy models.
Applying the parametrization of dark energy density, we can construct directly independent-model potentials. In Born-Infeld type phantom dark energy model, we consider four special parametrization equation of state parameter. The evolutive behavior of dark energy density with respect to red-shift $z$, potentials with respect to $phi$ and $z$ are shown mathematically. Moreover, we investigate the effect of parameter $eta$ upon the evolution of the constructed potential with respect to $z$. These results show that the evolutive behavior of constructed Born-Infeld type dark energy model is quite different from those of the other models.
Statefinder diagnostic is a useful method which can differ one dark energy model from the others. The Statefinder pair ${r, s}$ is algebraically related to the equation of state of dark energy and its first time derivative. We apply in this paper this method to the dilaton dark energy model based on Weyl-Scaled induced gravitational theory. We investigate the effect of the coupling between matter and dilaton when the potential of dilaton field is taken as the Mexican hat form. We find that the evolving trajectory of our model in the $r-s$ diagram is quite different from those of other dark energy models.
In this paper, we investigate the dynamics of Born-Infeld(B-I) phantom model in the $omega-omega$ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to $N$(the logarithm of the scale factor $a$). We find the scalar field equation of motion in $omega-omega$ plane, and show mathematically the property of attractor solutions which correspond to $omega_phisim-1$, $Omega_phi=1$, which avoid the Big rip problem and meets the current observations well.
We present new models of non-linear electromagnetism which satisfy the Noether-Gaillard-Zumino current conservation and are, therefore, self-dual. The new models differ from the Born-Infeld-type models in that they deform the Maxwell theory starting with terms like $lambda (partial F)^{4}$. We provide a recursive algorithm to find all higher order terms in the action of the form $lambda^{n} partial ^{4n} F^{2n+2} $, which are necessary for the U(1) duality current conservation. We use one of these models to find a self-dual completion of the $lambda (partial F)^{4}$ correction to the open string action. We discuss the implication of these findings for the issue of UV finiteness of ${cal N}=8$ supergravity.
We derive new types of $U(1)^n$ Born-Infeld actions based on N=2 special geometry in four dimensions. As in the single vector multiplet (n=1) case, the non--linear actions originate, in a particular limit, from quadratic expressions in the Maxwell fields. The dynamics is encoded in a set of coefficients $d_{ABC}$ related to the third derivative of the holomorphic prepotential and in an SU(2) triplet of N=2 Fayet-Iliopoulos charges, which must be suitably chosen to preserve a residual N=1 supersymmetry.