No Arabic abstract
We present new models of non-linear electromagnetism which satisfy the Noether-Gaillard-Zumino current conservation and are, therefore, self-dual. The new models differ from the Born-Infeld-type models in that they deform the Maxwell theory starting with terms like $lambda (partial F)^{4}$. We provide a recursive algorithm to find all higher order terms in the action of the form $lambda^{n} partial ^{4n} F^{2n+2} $, which are necessary for the U(1) duality current conservation. We use one of these models to find a self-dual completion of the $lambda (partial F)^{4}$ correction to the open string action. We discuss the implication of these findings for the issue of UV finiteness of ${cal N}=8$ supergravity.
We elaborate on how to build, in a systematic fashion, two-field Abelian extensions of the Born-Infeld Lagrangian. These models realize the non-trivial duality groups that are allowed in this case, namely U(2), SU(2) and U(1)xU(1). For each class, we also construct an explicit example. They all involve an overall square root and reduce to the Born-Infeld model if the two fields are identified, but differ in quartic and higher interactions. The U(1)xU(1) and SU(2) examples recover some recent results obtained with different techniques, and we show that the U(1)xU(1) model admits an N=1 supersymmetric completion. The U(2) example includes some unusual terms that are not analytic at the origin of field space.
We derive new types of $U(1)^n$ Born-Infeld actions based on N=2 special geometry in four dimensions. As in the single vector multiplet (n=1) case, the non--linear actions originate, in a particular limit, from quadratic expressions in the Maxwell fields. The dynamics is encoded in a set of coefficients $d_{ABC}$ related to the third derivative of the holomorphic prepotential and in an SU(2) triplet of N=2 Fayet-Iliopoulos charges, which must be suitably chosen to preserve a residual N=1 supersymmetry.
The Hawking-Moss tunneling rate for a field described by the Dirac-Born-Infeld action is calculated using a stochastic approach. We find that the effect of the non-trivial kinetic term is to enhance the tunneling rate, which can be exponentially significant. This result should be compared to the DBI enhancement found in the Coleman-de Luccia case.
We study the Dirac-Born-Infeld (DBI) action with one linear and one non-linear supersymmetry in the presence of a constant Fayet-Iliopoulos (FI) D-term added explicitly or through a deformation of supersymmetry transformations. The linear supersymmetry appears to be spontaneously broken since the D auxiliary field gets a non-vanishing vacuum expectation value and an extra term proportional to the FI parameter involving fermions emerges in the non-linear formulation of the action written recently. However in this note, we show that on-shell this action is equivalent to a standard supersymmetric DBI action ${it without}$ FI term but with redefined tension, at least up to order of mass-dimension 12 effective interactions.
We investigate $U(1)^{,n}$ supersymmetric Born-Infeld Lagrangians with a second non-linearly realized supersymmetry. The resulting non-linear structure is more complex than the square root present in the standard Born-Infeld action, and nonetheless the quadratic constraints determining these models can be solved exactly in all cases containing three vector multiplets. The corresponding models are classified by cubic holomorphic prepotentials. Their symmetry structures are associated to projective cubic varieties.