No Arabic abstract
We derive new types of $U(1)^n$ Born-Infeld actions based on N=2 special geometry in four dimensions. As in the single vector multiplet (n=1) case, the non--linear actions originate, in a particular limit, from quadratic expressions in the Maxwell fields. The dynamics is encoded in a set of coefficients $d_{ABC}$ related to the third derivative of the holomorphic prepotential and in an SU(2) triplet of N=2 Fayet-Iliopoulos charges, which must be suitably chosen to preserve a residual N=1 supersymmetry.
We investigate $U(1)^{,n}$ supersymmetric Born-Infeld Lagrangians with a second non-linearly realized supersymmetry. The resulting non-linear structure is more complex than the square root present in the standard Born-Infeld action, and nonetheless the quadratic constraints determining these models can be solved exactly in all cases containing three vector multiplets. The corresponding models are classified by cubic holomorphic prepotentials. Their symmetry structures are associated to projective cubic varieties.
We analyze the exact perturbative solution of N=2 Born-Infeld theory which is believed to be defined by Ketovs equation. This equation can be considered as a truncation of an infinite system of coupled differential equations defining Born-Infeld action with one manifest N=2 and one hidden N=2 supersymmetries. We explicitly demonstrate that infinitely many new structures appear in the higher orders of the perturbative solution to Ketovs equation. Thus, the full solution cannot be represented as a function depending on {it a finite number} of its arguments. We propose a mechanism for generating the new structures in the solution and show how it works up to 18-th order. Finally, we discuss two new superfield actions containing an infinite number of terms and sharing some common features with N=2 supersymmetric Born-Infeld action.
The requirement of the existence of a holographic c-function for higher derivative theories is a very restrictive one and hence most theories do not possess this property. Here, we show that, when some of the parameters are fixed, the $Dgeq3$ Born-Infeld gravity theories admit a holographic c-function. We work out the details of the $D=3$ theory with no free parameters, which is a non-minimal Born-Infeld type extension of new massive gravity. Moreover, we show that these theories generate an infinite number of higher derivative models admitting a c-function in a suitable expansion and therefore they can be studied at any truncated order.
We elaborate on how to build, in a systematic fashion, two-field Abelian extensions of the Born-Infeld Lagrangian. These models realize the non-trivial duality groups that are allowed in this case, namely U(2), SU(2) and U(1)xU(1). For each class, we also construct an explicit example. They all involve an overall square root and reduce to the Born-Infeld model if the two fields are identified, but differ in quartic and higher interactions. The U(1)xU(1) and SU(2) examples recover some recent results obtained with different techniques, and we show that the U(1)xU(1) model admits an N=1 supersymmetric completion. The U(2) example includes some unusual terms that are not analytic at the origin of field space.
We construct new gravitational vacuum star solutions with a Born-Infeld phantom replacing the de Sitter interior. The model allows for a wide range of masses and radii required by phenomenology, and can be motivated from low energy string theory.