Do you want to publish a course? Click here

Prediction of Electric Power Consumption Using RNN Networks

التنبؤ باستهلاك الطاقة الكهربائية باستخدام شبكات RNN

1373   3   0   0.0 ( 0 )
 Publication date 2023
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The electric power service in the Syrian Arab Republic suffers from many difficulties resulting from the lack of resources (fuel), in addition to the sabotage of many generation centers by terrorist groups, which led to the implementation of rationing programs in the governorates according to the consumption of those governorates and the production centers located in them. (factories, pumping centers, hospitals and the population). Forecasting electric energy consumption also requires knowledge of daily consumption quantities, consumption times and other influencing factors that constitute large amounts of data. Predicting the exact electrical load is still a challenging task due to many problems such as the non-linear nature of the time series or the seasonal patterns it displays, which are very time consuming and affect the accuracy of the prediction performance. The process can be improved by using RNNs.[2] Initially, the optimal and appropriate consumption for the region was determined, compared with production and the possibility of passing the surplus to other backup operations or providing production centers with the surplus that could be obtained through the previous forecasting process. Also, Recurrent Neural Networks (RNN) were used, which are time series based on data sequences according to time indices and their ability to predict future values ​​based on past data. Then the performance of those networks was compared with DNN networks (Dense Neural Network) to obtain an optimal future prediction that can be served by the Ministry of Electricity in the Syrian Arab Republic and to solve the problem of predicting the electrical load compared to previous studies. The time-based successive division method has also been adopted, which has the ability to work more accurately for randomly sampled data. For cases of low regulation of the hourly data for wattage consumption, we can sample a set of data over time and take 20 percent of the data for example as training and test samples. Based on the prediction values ​​resulting from this study, work is being done to distribute electrical energy in the most appropriate manner and in accordance with the importance of higher usage.


Artificial intelligence review:
Research summary
تعاني خدمة الطاقة الكهربائية في الجمهورية العربية السورية من العديد من الصعوبات الناتجة عن نقص الموارد والتخريب الذي تعرضت له مراكز التوليد. تهدف الدراسة إلى التنبؤ باستهلاك الطاقة الكهربائية باستخدام شبكات RNN (Recurrent Neural Networks) ومقارنتها مع شبكات DNN (Dense Neural Networks) للحصول على تنبؤ مستقبلي أمثل يمكن أن يخدم وزارة الكهرباء في سوريا. تم استخدام طريقة التقسيم المتتالي القائم على الوقت لتحسين دقة التنبؤ، وتم أخذ 20% من البيانات كعينات تدريب واختبار. أظهرت النتائج أن شبكات RNN تعطي نتائج أكثر دقة وفعالية عند القيم الصغرى والعظمى مقارنة بشبكات DNN. كما تم استخدام نموذج LSTM (Long-Short Term Memory) لتجنب مشكلة تلاشي المشتق وتحسين دقة التنبؤ. توصي الدراسة بربط النظام المقترح بأي نظام تحكم مستقبلي لتوزيع الطاقة الكهربائية بشكل أمثل في سوريا.
Critical review
تقدم الدراسة مساهمة قيمة في مجال التنبؤ باستهلاك الطاقة الكهربائية باستخدام تقنيات الذكاء الاصطناعي، وخاصة في ظل الظروف الصعبة التي تواجهها سوريا. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن تقديم تحليل أعمق للبيانات المستخدمة وتوضيح كيفية تأثير العوامل المختلفة على دقة التنبؤ. ثانياً، لم يتم تناول كيفية التعامل مع البيانات المفقودة أو غير المنطقية بشكل كافٍ، مما قد يؤثر على دقة النموذج. ثالثاً، كان من الممكن توسيع الدراسة لتشمل مناطق أخرى في سوريا للحصول على نتائج أكثر شمولية. وأخيراً، كان من الأفضل تقديم مقارنة مع دراسات سابقة بشكل أكثر تفصيلاً لتوضيح مدى تفوق النموذج المقترح.
Questions related to the research
  1. ما هي الأهداف الرئيسية للدراسة؟

    تهدف الدراسة إلى التنبؤ باستهلاك الطاقة الكهربائية باستخدام شبكات RNN ومقارنتها مع شبكات DNN للحصول على تنبؤ مستقبلي أمثل يمكن أن يخدم وزارة الكهرباء في سوريا.

  2. ما هي الطريقة المستخدمة لتحسين دقة التنبؤ؟

    تم استخدام طريقة التقسيم المتتالي القائم على الوقت لتحسين دقة التنبؤ، وتم أخذ 20% من البيانات كعينات تدريب واختبار.

  3. ما هي الفروقات بين شبكات RNN وشبكات DNN في نتائج التنبؤ؟

    أظهرت النتائج أن شبكات RNN تعطي نتائج أكثر دقة وفعالية عند القيم الصغرى والعظمى مقارنة بشبكات DNN.

  4. كيف تم التعامل مع مشكلة تلاشي المشتق في الدراسة؟

    تم استخدام نموذج LSTM (Long-Short Term Memory) لتجنب مشكلة تلاشي المشتق وتحسين دقة التنبؤ.


References used
S.Canada, “Households and the environment survey: Energy use, 2013,” http://www.statcan.gc.ca/dailyquotidien/160318/dq160318d-eng.htm, Mar 2016.
U. D. of Energy, “Green button,” https://energy.gov/data/green-button.
R. K. Jain, K. M. Smith, P. J. Culligan, and J. E. Taylor, “Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy,” Applied Energy, vol. 123, pp. 168–178, 2014.
Y. Liu, W. Wang, and N. Ghadimi, “Electricity load forecasting by an improved forecast engine for building level consumers,” Energy, vol. 139, pp. 18–30, 2017
.R. E. Edwards, J. New, and L. E. Parker, “Predicting future hourly residential electrical consumption: A machine learning case study,” Energy and Buildings, vol. 49, pp. 591–603, 2012.
rate research

Read More

The demand growing of energy is offset by the weakening of the generating capacity of power due to the war conditions in Syria. As the windows are the means of optical communication between inside and outside of the building, the source of the vent ilation and the natural lighting, thus having an important effect on the thermal performance of the building, which affects the consumption of energy. so the search relied on proposing alternatives for glass to test its thermal performance, the choice of alternatives was based on the diversity between the values of solar radiation permeability and the visual light in addition to enumeration of the layers, to which end the computer simulation method was adopted and the results were compared to a model Standard (single-transparent). The results of the comparison showed that the amount of energy saving could be as high as 35% for the face of the sun-exposed facades directly. By reducing the permeability of the total glass of solar radiation and increasing the permeability of the visible light to increase the amount of natural illumination, plus the adoption of a Multi-layered glazing system , the study recommended that appropriate glass selection must be taken into account in the early design phase
It is the automatic control engineering knowledge forum, as it should monitor and control the variables that interact in all industrial processes to perform functions equipment installations constructed for her. The automatic control system techno logy has a big role in easing the burden of daily life, and make them more luxury. automatic control applications in most appliances, such as: air conditioning and stoves, washing machines, etc.Automated control concepts has been used in various areas of knowledge such as biology, economics, sociology, medicine and education .
In this research, We present a scientific advanced developed study and keeping up with new studies and technologies of very short-term electrical load forecasting and applying this study for electrical load forecasting of basic Syrian electrical p ower system by studying this prediction for next four hours according to the criterion applied in the Syrian Electricity Ministry with ten minutes intervals ,we call it "Instant electrical load forecasting".
The contribution of our research include building an artificial neural network in MATLAB program environment and improvement of maximum loading point algorithm, to compute the most critical voltage stability margin, for on-line voltage stability a ssessment, and a method to approximate the most critical voltage stability margin accurately. a method to create a (ARTIFICIAL NEURAL NETWORK) approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا