Do you want to publish a course? Click here

Private Text Classification with Convolutional Neural Networks

تصنيف النص الخاص مع الشبكات العصبية التنافعية

716   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Text classifiers are regularly applied to personal texts, leaving users of these classifiers vulnerable to privacy breaches. We propose a solution for privacy-preserving text classification that is based on Convolutional Neural Networks (CNNs) and Secure Multiparty Computation (MPC). Our method enables the inference of a class label for a personal text in such a way that (1) the owner of the personal text does not have to disclose their text to anyone in an unencrypted manner, and (2) the owner of the text classifier does not have to reveal the trained model parameters to the text owner or to anyone else. To demonstrate the feasibility of our protocol for practical private text classification, we implemented it in the PyTorch-based MPC framework CrypTen, using a well-known additive secret sharing scheme in the honest-but-curious setting. We test the runtime of our privacy-preserving text classifier, which is fast enough to be used in practice.



References used
https://aclanthology.org/
rate research

Read More

We study the problem of domain adaptation in Neural Machine Translation (NMT) when domain-specific data cannot be shared due to confidentiality or copyright issues. As a first step, we propose to fragment data into phrase pairs and use a random sampl e to fine-tune a generic NMT model instead of the full sentences. Despite the loss of long segments for the sake of confidentiality protection, we find that NMT quality can considerably benefit from this adaptation, and that further gains can be obtained with a simple tagging technique.
In recent years, the problem of classifying objects in images has increased by using deep learning as a result of the industrial sector requirements. Despite of many algorithms used in this field, such as Deep Learning Neural Network DNN and Convolut ional Neural Network CNN, the proposed systems to address this problem Lack of comprehensive solution to the difficulties of long training time and floating memory during the training process, low rating classification. Convolutional Neural Networks (CNNs), which are the most used algorithms for this task, were a mathematical pattern for analyzing images data. A new deep-traversal network pattern was proposed to solve the above problems. The aim of the research is to demonstrate the performance of the recognition system using CNNs networks on the available memory and training time by adapting appropriate variables for the bypass network. The database used in this research is CIFAR10, which consists of 60000 colorful images belonging to ten categories, as every 6,000 images are for a class of these items. Where there are 50,000 training images and 10,000 test tubes. When tested on a sample of selected images from the CIFAR10 database, the model achieved a rating classification of 98.87%.
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR ) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
Hope is an essential aspect of mental health stability and recovery in every individual in this fast-changing world. Any tools and methods developed for detection, analysis, and generation of hope speech will be beneficial. In this paper, we propose a model on hope-speech detection to automatically detect web content that may play a positive role in diffusing hostility on social media. We perform the experiments by taking advantage of pre-processing and transfer-learning models. We observed that the pre-trained multilingual-BERT model with convolution neural networks gave the best results. Our model ranked first, third, and fourth ranks on English, Malayalam-English, and Tamil-English code-mixed datasets.
Fine-grained temporal relation extraction (FineTempRel) aims to recognize the durations and timeline of event mentions in text. A missing part in the current deep learning models for FineTempRel is their failure to exploit the syntactic structures of the input sentences to enrich the representation vectors. In this work, we propose to fill this gap by introducing novel methods to integrate the syntactic structures into the deep learning models for FineTempRel. The proposed model focuses on two types of syntactic information from the dependency trees, i.e., the syntax-based importance scores for representation learning of the words and the syntactic connections to identify important context words for the event mentions. We also present two novel techniques to facilitate the knowledge transfer between the subtasks of FineTempRel, leading to a novel model with the state-of-the-art performance for this task.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا