المعادلة التفاضلية differential equationهي علاقة تربط بين متحول (متغير) مستقل واحد أو أكثر والدالة function المبحوث عنها التابعة لهذه المتحولات (التي يفترض أنها وحيدة التعيين) ومشتقات هذه الدالَّة بالنسبة لهذه المتحولات، التي يفترض أنها متحولات حقيقية وكذلك الدالة.
تتضمن الرسالة أربعة فصول :
الفصل الأول : ويتضمن بعض المفاهيم والتعاريف والمبرهنات التي تتعلق بالبحث.
الفصل الثاني : دراسة استقرار جملة معادلات تفاضلية خطية لا توقفيه ذات تأخير زمني .
الفصل الثالث :دراسة استقرار حل جملة المعادلات التفاضلية الخطية
ذات تأخير زمني .
الفصل الرابع : دراسة استقرار حل المعادلات التفاضلية لا توقفية ذات تأخر زمني باستخدام نظرية النقطة الثابتة
We study the asymptotic behavior of solutions of a nonlinear differential
equation.
Using Bihari's integral inequality, we obtain sufficient conditions for all of
continuable solutions to be asymptotic.
In this paper, spline approximations with five collocation points are used for the
numerical simulation of stochastic of differential equations(SDE). First, we have modeled
continuous-valued discrete wiener process, and then numerical asymptotic st
ochastic
stability of spline method is studied when applied to SDEs. The study shows that the
method when applied to linear and nonlinear SDEs are stable and convergent.
Moreover, the scheme is tested on two linear and nonlinear problems to illustrate
the applicability and efficiency of the purposed method. Comparisons of our results with
Euler–Maruyama method, Milstein’s method and Runge-Kutta method, it reveals that the
our scheme is better than others.
Defining some of the essential definitions and conceptions.
Stochastic matrix.
Stability.
Approximate stability.
Approximate stability in the quadratic middle.
Formula of a system of unsettled non stationary stochastic
differential equations.
Formula of a generalized system of unsettled non- stationary
stochastic differential equations.
Foundations of a system of differential equations that divines the
partial moments of the second order.
Foundations of a system of differential equations that divines
matrices of Lyapunov's functions.
The necessary and sufficient conditions formatrisses of Lyapunov's
functions to assure the stability of the studied system's solution
approximately in the quadratic middle.
In this paper we present a study on the time cost
added to the grid computing as a result of the use of a
coordinated checkpoint / recovery fault tolerance protocol, we aim
to find a mathematical model which determined the suitable time
to save t
he checkpoints for application, to achieve a minimum
finish time of parallel application in grid computing with faults and
fault tolerance protocols, we have find this model by serial
modeling to the goal errors, execution environment and the
chosen fault tolerance protocol all that by Kolmogorov differential
equations.