Do you want to publish a course? Click here

Contextualize Knowledge Bases with Transformer for End-to-end Task-Oriented Dialogue Systems

محول قواعد المعرفة مع محول نظم الحوار الموجه نحو المهام المنتهي

395   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Incorporating knowledge bases (KB) into end-to-end task-oriented dialogue systems is challenging, since it requires to properly represent the entity of KB, which is associated with its KB context and dialogue context. The existing works represent the entity with only perceiving a part of its KB context, which can lead to the less effective representation due to the information loss, and adversely favor KB reasoning and response generation. To tackle this issue, we explore to fully contextualize the entity representation by dynamically perceiving all the relevant entities and dialogue history. To achieve this, we propose a COntext-aware Memory Enhanced Transformer framework (COMET), which treats the KB as a sequence and leverages a novel Memory Mask to enforce the entity to only focus on its relevant entities and dialogue history, while avoiding the distraction from the irrelevant entities. Through extensive experiments, we show that our COMET framework can achieve superior performance over the state of the arts.



References used
https://aclanthology.org/
rate research

Read More

Generative models for dialog systems have gained much interest because of the recent success of RNN and Transformer based models in tasks like question answering and summarization. Although the task of dialog response generation is generally seen as a sequence to sequence (Seq2Seq) problem, researchers in the past have found it challenging to train dialog systems using the standard Seq2Seq models. Therefore, to help the model learn meaningful utterance and conversation level features, Sordoni et al. (2015b), Serban et al. (2016) proposed Hierarchical RNN architecture, which was later adopted by several other RNN based dialog systems. With the transformer-based models dominating the seq2seq problems lately, the natural question to ask is the applicability of the notion of hierarchy in transformer-based dialog systems. In this paper, we propose a generalized framework for Hierarchical Transformer Encoders and show how a standard transformer can be morphed into any hierarchical encoder, including HRED and HIBERT like models, by using specially designed attention masks and positional encodings. We demonstrate that Hierarchical Encoding helps achieve better natural language understanding of the contexts in transformer-based models for task-oriented dialog systems through a wide range of experiments.
The paradigm of leveraging large pre-trained language models has made significant progress on benchmarks on task-oriented dialogue (TOD) systems. In this paper, we combine this paradigm with multi-task learning framework for end-to-end TOD modeling b y adopting span prediction as an auxiliary task. In end-to-end setting, our model achieves new state-of-the-art results with combined scores of 108.3 and 107.5 on MultiWOZ 2.0 and MultiWOZ 2.1, respectively. Furthermore, we demonstrate that multi-task learning improves not only the performance of model but its generalization capability through domain adaptation experiments in the few-shot setting. The code is available at github.com/bepoetree/MTTOD.
Recent years has witnessed the remarkable success in end-to-end task-oriented dialog system, especially when incorporating external knowledge information. However, the quality of most existing models' generated response is still limited, mainly due t o their lack of fine-grained reasoning on deterministic knowledge (w.r.t. conceptual tokens), which makes them difficult to capture the concept shifts and identify user's real intention in cross-task scenarios. To address these issues, we propose a novel intention mechanism to better model deterministic entity knowledge. Based on such a mechanism, we further propose an intention reasoning network (IR-Net), which consists of joint and multi-hop reasoning, to obtain intention-aware representations of conceptual tokens that can be used to capture the concept shifts involved in task-oriented conversations, so as to effectively identify user's intention and generate more accurate responses. Experimental results verify the effectiveness of IR-Net, showing that it achieves the state-of-the-art performance on two representative multi-domain dialog datasets.
Continual learning in task-oriented dialogue systems allows the system to add new domains and functionalities overtime after deployment, without incurring the high cost of retraining the whole system each time. In this paper, we propose a first-ever continual learning benchmark for task-oriented dialogue systems with 37 domains to be learned continuously in both modularized and end-to-end learning settings. In addition, we implement and compare multiple existing continual learning baselines, and we propose a simple yet effective architectural method based on residual adapters. We also suggest that the upper bound performance of continual learning should be equivalent to multitask learning when data from all domain is available at once. Our experiments demonstrate that the proposed architectural method and a simple replay-based strategy perform better, by a large margin, compared to other continuous learning techniques, and only slightly worse than the multitask learning upper bound while being 20X faster in learning new domains. We also report several trade-offs in terms of parameter usage, memory size and training time, which are important in the design of a task-oriented dialogue system. The proposed benchmark is released to promote more research in this direction.
Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user simulators have their own problems. While hand-coded, rule-based user simulators have been shown to be sufficient in small, simple domains, for complex domains the number of rules quickly becomes intractable. State-of-the-art data-driven user simulators, on the other hand, are still domain-dependent. This means that adaptation to each new domain requires redesigning and retraining. In this work, we propose a domain-independent transformer-based user simulator (TUS). The structure of TUS is not tied to a specific domain, enabling domain generalization and the learning of cross-domain user behaviour from data. We compare TUS with the state-of-the-art using automatic as well as human evaluations. TUS can compete with rule-based user simulators on pre-defined domains and is able to generalize to unseen domains in a zero-shot fashion.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا