تستخرف تستخرف توائم النص من النص الخام مهمة حاسمة في استخراج المعلومات، مما يتيح تطبيقات متعددة مثل ملء قواعد المعرفة أو التحقق من صحة المعرفة ومهام المصب الأخرى. ومع ذلك، فإنه عادة ما ينطوي عادة على خطوط أنابيب متعددة الخطوات التي تنتشر أخطاء أو تقتصر على عدد صغير من أنواع العلاقات. للتغلب على هذه القضايا، نقترح استخدام نماذج SEQ2SEQ AutoRegressive. لقد سبق أن ثبت أن هذه النماذج قد تؤدي بشكل جيد ليس فقط في توليد اللغة، ولكن أيضا في مهام NLU مثل ربط الكيان، بفضل تأطيرها كامرأة SEQ2SEQ. في هذه الورقة، نظهر كيف يمكن تبسيط استخراج العلاقات من خلال التعبير عن توابع توائم كسلسلة من النص، ونحن نقدم المتمردين، نموذج SEQ2SEQ يعتمد على BART يؤدي استخراج العلاقات الطرفية إلى نهاية لأكثر من 200 نوع من العلاقات المختلفة. نظهر مرونة نموذجنا من خلال ضبطه بشكل جيد على مجموعة من معايير استخراج العلاقات وعلاقة التصنيف، مع أنها تحقق أداء حديثة في معظمها.
Extracting relation triplets from raw text is a crucial task in Information Extraction, enabling multiple applications such as populating or validating knowledge bases, factchecking, and other downstream tasks. However, it usually involves multiple-step pipelines that propagate errors or are limited to a small number of relation types. To overcome these issues, we propose the use of autoregressive seq2seq models. Such models have previously been shown to perform well not only in language generation, but also in NLU tasks such as Entity Linking, thanks to their framing as seq2seq tasks. In this paper, we show how Relation Extraction can be simplified by expressing triplets as a sequence of text and we present REBEL, a seq2seq model based on BART that performs end-to-end relation extraction for more than 200 different relation types. We show our model's flexibility by fine-tuning it on an array of Relation Extraction and Relation Classification benchmarks, with it attaining state-of-the-art performance in most of them.
References used
https://aclanthology.org/
This tutorial surveys the latest technical progress of syntactic parsing and the role of syntax in end-to-end natural language processing (NLP) tasks, in which semantic role labeling (SRL) and machine translation (MT) are the representative NLP tasks
Fully understanding narratives often requires identifying events in the context of whole documents and modeling the event relations. However, document-level event extraction is a challenging task as it requires the extraction of event and entity core
Most previous studies on information status (IS) classification and bridging anaphora recognition assume that the gold mention or syntactic tree information is given (Hou et al., 2013; Roesiger et al., 2018; Hou, 2020; Yu and Poesio, 2020). In this p
We propose a novel problem within end-to-end learning of task oriented dialogs (TOD), in which the dialog system mimics a troubleshooting agent who helps a user by diagnosing their problem (e.g., car not starting). Such dialogs are grounded in domain
A conventional approach to improving the performance of end-to-end speech translation (E2E-ST) models is to leverage the source transcription via pre-training and joint training with automatic speech recognition (ASR) and neural machine translation (