توليد أزواج الإجابة ذات الجودة العالية هي مهمة صلبة ولكنها ذات مغزى. على الرغم من أن الأعمال السابقة قد حققت نتائج رائعة حول توليد الأسئلة على دراية بالإجابة، فمن الصعب تطبيقها في تطبيق عملي في مجال التعليم. تتناول هذه الورقة لأول مرة مهمة توليد زوج الإجابة السؤال في بيانات الفحص العالمي الحقيقي، وتقترح إطارا جديدا جديدا في العرق. لالتقاط المعلومات المهمة لمقطع الإدخال، نقوم أولا بإنشاء أجهزة iTPhragrases (بدلا من استخراج)، وبالتالي يتم تقليل هذه المهمة إلى توليد مشترك مسدد السؤال عن السؤال المجاني. تبعا لذلك، نقترح نموذج اتصالات متعددة الوكيل لتوليد واستفسار الأسئلة والمجاسات القصيرة بشكل متكرر، ثم قم بتطبيق السؤال والمجاسيات المتولدة لتوجيه جيل الإجابات. لإنشاء معيار قوي، نبني نموذجنا على نموذج ما قبل التدريب الجيل القوي. تظهر النتائج التجريبية أن نموذجنا يجعل اختراقات كبيرة في مهمة جيل الإجابة عن السؤال. علاوة على ذلك، فإننا نصنع تحليلا شاملا على طرازنا، مما يشير إلى اتجاهات جديدة لهذه المهمة الصعبة.
Generating high quality question-answer pairs is a hard but meaningful task. Although previous works have achieved great results on answer-aware question generation, it is difficult to apply them into practical application in the education field. This paper for the first time addresses the question-answer pair generation task on the real-world examination data, and proposes a new unified framework on RACE. To capture the important information of the input passage we first automatically generate (rather than extracting) keyphrases, thus this task is reduced to keyphrase-question-answer triplet joint generation. Accordingly, we propose a multi-agent communication model to generate and optimize the question and keyphrases iteratively, and then apply the generated question and keyphrases to guide the generation of answers. To establish a solid benchmark, we build our model on the strong generative pre-training model. Experimental results show that our model makes great breakthroughs in the question-answer pair generation task. Moreover, we make a comprehensive analysis on our model, suggesting new directions for this challenging task.
References used
https://aclanthology.org/
Asking questions about a situation is an inherent step towards understanding it. To this end, we introduce the task of role question generation, which, given a predicate mention and a passage, requires producing a set of questions asking about all po
In education, quiz questions have become an important tool for assessing the knowledge of students. Yet, manually preparing such questions is a tedious task, and thus automatic question generation has been proposed as a possible alternative. So far,
Motivated by suggested question generation in conversational news recommendation systems, we propose a model for generating question-answer pairs (QA pairs) with self-contained, summary-centric questions and length-constrained, article-summarizing an
Question answering (QA) systems are now available through numerous commercial applications for a wide variety of domains, serving millions of users that interact with them via speech interfaces. However, current benchmarks in QA research do not accou
Dual-Encoders is a promising mechanism for answer retrieval in question answering (QA) systems. Currently most conventional Dual-Encoders learn the semantic representations of questions and answers merely through matching score. Researchers proposed