في التعليم، أصبحت أسئلة الاختبار أداة مهمة لتقييم معرفة الطلاب.ومع ذلك، فإن إعداد هذه الأسئلة يدويا هو مهمة مملة، وبالتالي تم اقتراح توليد السؤال التلقائي كديل ممكن.حتى الآن، ركزت الغالبية العظمى من الأبحاث على توليد نص الأسئلة، والاعتماد على سؤال حول مجموعات البيانات مع الإجابات التي اختارها بسهولة، ومشكلة كيفية التوصل إلى إجابة المرشحين في المقام الأول تم تجاهلها إلى حد كبير.هنا، نحن نهدف إلى سد هذه الفجوة.على وجه الخصوص، نقترح نموذجا يمكن أن ينشئ عددا محددا من المرشحين للإجابة لمرق معين من النص، والذي يمكن بعد ذلك استخدامه من قبل المدربين لكتابة الأسئلة يدويا أو يمكن تمريرهم كمدخل لمولدات السؤال التلقائي للإجابة.تشير تجاربنا إلى أن نموذج جيل الرد الخاص بنا اقترح ينفأ على العديد من خطوط الأساس.
In education, quiz questions have become an important tool for assessing the knowledge of students. Yet, manually preparing such questions is a tedious task, and thus automatic question generation has been proposed as a possible alternative. So far, the vast majority of research has focused on generating the question text, relying on question answering datasets with readily picked answers, and the problem of how to come up with answer candidates in the first place has been largely ignored. Here, we aim to bridge this gap. In particular, we propose a model that can generate a specified number of answer candidates for a given passage of text, which can then be used by instructors to write questions manually or can be passed as an input to automatic answer-aware question generators. Our experiments show that our proposed answer candidate generation model outperforms several baselines.
References used
https://aclanthology.org/
The evaluation of question answering models compares ground-truth annotations with model predictions. However, as of today, this comparison is mostly lexical-based and therefore misses out on answers that have no lexical overlap but are still semanti
Dual-Encoders is a promising mechanism for answer retrieval in question answering (QA) systems. Currently most conventional Dual-Encoders learn the semantic representations of questions and answers merely through matching score. Researchers proposed
How can we generate concise explanations for multi-hop Reading Comprehension (RC)? The current strategies of identifying supporting sentences can be seen as an extractive question-focused summarization of the input text. However, these extractive exp
Generating high quality question-answer pairs is a hard but meaningful task. Although previous works have achieved great results on answer-aware question generation, it is difficult to apply them into practical application in the education field. Thi
Although showing promising values to downstream applications, generating question and answer together is under-explored. In this paper, we introduce a novel task that targets question-answer pair generation from visual images. It requires not only ge