تحدي واحد في تقييم نماذج الإجابة عن السؤال المرئي (VQA) في إعداد التكيف عبر DataSet هو أن التحولات التوزيع متعددة الوسائط متعددة، مما يجعل من الصعب تحديد ما إذا كانت التحولات في ميزات مرئية أو لغة تلعب دورا رئيسيا. في هذه الورقة، نقترح إطارا شبه أوتوماتيكي لإنشاء تحولات محددة من خلال إدخال وحدة نمطية لجيل الإجابات مرئية يمكن السيطرة عليها (VQAG) قادرة على توليد أزواج للإجابة على الأسئلة ذات الصلة والتنوع مع نمط البيانات المطلوب. نستخدمها لإنشاء crossvqa، وهي مجموعة من تقسيم الاختبار لتقييم مجموعات بيانات VQA2، VizWiz، وفتح الصور المفتوحة. نحن نقدم تحليلا لمجموعات البيانات التي تم إنشاؤها وإظهار فائدتها باستخدامها لتقييم العديد من أنظمة VQA الحديثة. اكتشاف واحد مهم هو أن التحولات المرئية في VQA عبر DataSet يهم أكثر من التحولات اللغوية. على نطاق أوسع، نقدم إطارا قابل للتطوير لتقييم الجهاز بشكل منهجي مع التدخل البشري القليل.
One challenge in evaluating visual question answering (VQA) models in the cross-dataset adaptation setting is that the distribution shifts are multi-modal, making it difficult to identify if it is the shifts in visual or language features that play a key role. In this paper, we propose a semi-automatic framework for generating disentangled shifts by introducing a controllable visual question-answer generation (VQAG) module that is capable of generating highly-relevant and diverse question-answer pairs with the desired dataset style. We use it to create CrossVQA, a collection of test splits for assessing VQA generalization based on the VQA2, VizWiz, and Open Images datasets. We provide an analysis of our generated datasets and demonstrate its utility by using them to evaluate several state-of-the-art VQA systems. One important finding is that the visual shifts in cross-dataset VQA matter more than the language shifts. More broadly, we present a scalable framework for systematically evaluating the machine with little human intervention.
References used
https://aclanthology.org/
We propose EASE, a simple diagnostic tool for Visual Question Answering (VQA) which quantifies the difficulty of an image, question sample. EASE is based on the pattern of answers provided by multiple annotators to a given question. In particular, it
MiniVQA is a Jupyter notebook to build a tailored VQA competition for your students. The resource creates all the needed resources to create a classroom competition that engages and inspires your students on the free, self-service Kaggle platform. InClass competitions make machine learning fun!.
Although pre-training models have achieved great success in dialogue generation, their performance drops dramatically when the input contains an entity that does not appear in pre-training and fine-tuning datasets (unseen entity). To address this iss
يعرف التوحد بأنه أحد الاضطرابات النمائية الشاملة يتسم بقصور نوعي في مهارات التواصل والانتباه ومهارات التفاعل الاجتماعي
Abductive reasoning starts from some observations and aims at finding the most plausible explanation for these observations. To perform abduction, humans often make use of temporal and causal inferences, and knowledge about how some hypothetical situ