Do you want to publish a course? Click here

Diversity and Consistency: Exploring Visual Question-Answer Pair Generation

التنوع والاتساق: استكشاف جيل زوج الإجابة السؤال المرئي

164   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Although showing promising values to downstream applications, generating question and answer together is under-explored. In this paper, we introduce a novel task that targets question-answer pair generation from visual images. It requires not only generating diverse question-answer pairs but also keeping the consistency of them. We study different generation paradigms for this task and propose three models: the pipeline model, the joint model, and the sequential model. We integrate variational inference into these models to achieve diversity and consistency. We also propose region representation scaling and attention alignment to improve the consistency further. We finally devise an evaluator as a quantitative metric for consistency. We validate our approach on two benchmarks, VQA2.0 and Visual-7w, by automatically and manually evaluating diversity and consistency. Experimental results show the effectiveness of our models: they can generate diverse or consistent pairs. Moreover, this task can be used to improve visual question generation and visual question answering.

References used
https://aclanthology.org/
rate research

Read More

Despite excellent performance on tasks such as question answering, Transformer-based architectures remain sensitive to syntactic and contextual ambiguities. Question Paraphrasing (QP) offers a promising solution as a means to augment existing dataset s. The main challenges of current QP models include lack of training data and difficulty in generating diverse and natural questions. In this paper, we present Conquest, a framework for generating synthetic datasets for contextual question paraphrasing. To this end, Conquest first employs an answer-aware question generation (QG) model to create a question-pair dataset and then uses this data to train a contextualized question paraphrasing model. We extensively evaluate Conquest and show its ability to produce more diverse and fluent question pairs than existing approaches. Our contextual paraphrase model also establishes a strong baseline for end-to-end contextual paraphrasing. Further, We find that context can improve BLEU-1 score on contextual compression and expansion by 4.3 and 11.2 respectively, compared to a non-contextual model.
Dual-Encoders is a promising mechanism for answer retrieval in question answering (QA) systems. Currently most conventional Dual-Encoders learn the semantic representations of questions and answers merely through matching score. Researchers proposed to introduce the QA interaction features in scoring function but at the cost of low efficiency in inference stage. To keep independent encoding of questions and answers during inference stage, variational auto-encoder is further introduced to reconstruct answers (questions) from question (answer) embeddings as an auxiliary task to enhance QA interaction in representation learning in training stage. However, the needs of text generation and answer retrieval are different, which leads to hardness in training. In this work, we propose a framework to enhance the Dual-Encoders model with question answer cross-embeddings and a novel Geometry Alignment Mechanism (GAM) to align the geometry of embeddings from Dual-Encoders with that from Cross-Encoders. Extensive experimental results show that our framework significantly improves Dual-Encoders model and outperforms the state-of-the-art method on multiple answer retrieval datasets.
Question answering (QA) models for reading comprehension have been demonstrated to exploit unintended dataset biases such as question--context lexical overlap. This hinders QA models from generalizing to under-represented samples such as questions wi th low lexical overlap. Question generation (QG), a method for augmenting QA datasets, can be a solution for such performance degradation if QG can properly debias QA datasets. However, we discover that recent neural QG models are biased towards generating questions with high lexical overlap, which can amplify the dataset bias. Moreover, our analysis reveals that data augmentation with these QG models frequently impairs the performance on questions with low lexical overlap, while improving that on questions with high lexical overlap. To address this problem, we use a synonym replacement-based approach to augment questions with low lexical overlap. We demonstrate that the proposed data augmentation approach is simple yet effective to mitigate the degradation problem with only 70k synthetic examples.
Story visualization is an underexplored task that falls at the intersection of many important research directions in both computer vision and natural language processing. In this task, given a series of natural language captions which compose a story , an agent must generate a sequence of images that correspond to the captions. Prior work has introduced recurrent generative models which outperform text-to-image synthesis models on this task. However, there is room for improvement of generated images in terms of visual quality, coherence and relevance. We present a number of improvements to prior modeling approaches, including (1) the addition of a dual learning framework that utilizes video captioning to reinforce the semantic alignment between the story and generated images, (2) a copy-transform mechanism for sequentially-consistent story visualization, and (3) MART-based transformers to model complex interactions between frames. We present ablation studies to demonstrate the effect of each of these techniques on the generative power of the model for both individual images as well as the entire narrative. Furthermore, due to the complexity and generative nature of the task, standard evaluation metrics do not accurately reflect performance. Therefore, we also provide an exploration of evaluation metrics for the model, focused on aspects of the generated frames such as the presence/quality of generated characters, the relevance to captions, and the diversity of the generated images. We also present correlation experiments of our proposed automated metrics with human evaluations.
In question generation, the question produced has to be well-formed and meaningfully related to the answer serving as input. Neural generation methods have predominantly leveraged the distributional semantics of words as representations of meaning an d generated questions one word at a time. In this paper, we explore the viability of form-based and more fine-grained encodings, such as character or subword representations for question generation. We start from the typical seq2seq architecture using word embeddings presented by De Kuthy et al. (2020), who generate questions from text so that the answer given in the input text matches not just in meaning but also in form, satisfying question-answer congruence. We show that models trained on character and subword representations substantially outperform the published results based on word embeddings, and they do so with fewer parameters. Our approach eliminates two important problems of the word-based approach: the encoding of rare or out-of-vocabulary words and the incorrect replacement of words with semantically-related ones. The character-based model substantially improves on the published results, both in terms of BLEU scores and regarding the quality of the generated question. Going beyond the specific task, this result adds to the evidence weighing different form- and meaning-based representations for natural language processing tasks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا