Do you want to publish a course? Click here

ConQuest: Contextual Question Paraphrasing through Answer-Aware Synthetic Question Generation

الفتح: إعادة صياغة السؤال السياقي من خلال جيل السؤال الاصطناعي على دراية

336   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Despite excellent performance on tasks such as question answering, Transformer-based architectures remain sensitive to syntactic and contextual ambiguities. Question Paraphrasing (QP) offers a promising solution as a means to augment existing datasets. The main challenges of current QP models include lack of training data and difficulty in generating diverse and natural questions. In this paper, we present Conquest, a framework for generating synthetic datasets for contextual question paraphrasing. To this end, Conquest first employs an answer-aware question generation (QG) model to create a question-pair dataset and then uses this data to train a contextualized question paraphrasing model. We extensively evaluate Conquest and show its ability to produce more diverse and fluent question pairs than existing approaches. Our contextual paraphrase model also establishes a strong baseline for end-to-end contextual paraphrasing. Further, We find that context can improve BLEU-1 score on contextual compression and expansion by 4.3 and 11.2 respectively, compared to a non-contextual model.



References used
https://aclanthology.org/
rate research

Read More

Although showing promising values to downstream applications, generating question and answer together is under-explored. In this paper, we introduce a novel task that targets question-answer pair generation from visual images. It requires not only ge nerating diverse question-answer pairs but also keeping the consistency of them. We study different generation paradigms for this task and propose three models: the pipeline model, the joint model, and the sequential model. We integrate variational inference into these models to achieve diversity and consistency. We also propose region representation scaling and attention alignment to improve the consistency further. We finally devise an evaluator as a quantitative metric for consistency. We validate our approach on two benchmarks, VQA2.0 and Visual-7w, by automatically and manually evaluating diversity and consistency. Experimental results show the effectiveness of our models: they can generate diverse or consistent pairs. Moreover, this task can be used to improve visual question generation and visual question answering.
Amidst rising mental health needs in society, virtual agents are increasingly deployed in counselling. In order to give pertinent advice, counsellors must first gain an understanding of the issues at hand by eliciting sharing from the counsellee. It is thus important for the counsellor chatbot to encourage the user to open up and talk. One way to sustain the conversation flow is to acknowledge the counsellee's key points by restating them, or probing them further with questions. This paper applies models from two closely related NLP tasks --- summarization and question generation --- to restatement and question generation in the counselling context. We conducted experiments on a manually annotated dataset of Cantonese post-reply pairs on topics related to loneliness, academic anxiety and test anxiety. We obtained the best performance in both restatement and question generation by fine-tuning BertSum, a state-of-the-art summarization model, with the in-domain manual dataset augmented with a large-scale, automatically mined open-domain dataset.
Question answering (QA) models for reading comprehension have been demonstrated to exploit unintended dataset biases such as question--context lexical overlap. This hinders QA models from generalizing to under-represented samples such as questions wi th low lexical overlap. Question generation (QG), a method for augmenting QA datasets, can be a solution for such performance degradation if QG can properly debias QA datasets. However, we discover that recent neural QG models are biased towards generating questions with high lexical overlap, which can amplify the dataset bias. Moreover, our analysis reveals that data augmentation with these QG models frequently impairs the performance on questions with low lexical overlap, while improving that on questions with high lexical overlap. To address this problem, we use a synonym replacement-based approach to augment questions with low lexical overlap. We demonstrate that the proposed data augmentation approach is simple yet effective to mitigate the degradation problem with only 70k synthetic examples.
Open-domain question answering aims at locating the answers to user-generated questions in massive collections of documents. Retriever-readers and knowledge graph approaches are two big families of solutions to this task. A retriever-reader first app lies information retrieval techniques to locate a few passages that are likely to be relevant, and then feeds the retrieved text to a neural network reader to extract the answer. Alternatively, knowledge graphs can be constructed and queried to answer users' questions. We propose an algorithm with a novel reader-retriever design that differs from both families. Our reader-retriever first uses an offline reader to read the corpus and generate collections of all answerable questions associated with their answers, and then uses an online retriever to respond to user queries by searching the pre-constructed question spaces for answers that are most likely to be asked in the given way. We further combine one retriever-reader and two reader-retrievers into a hybrid model called R6 for the best performance. Experiments with two large-scale public datasets show that R6 achieves state-of-the-art accuracy.
Coupled with the availability of large scale datasets, deep learning architectures have enabled rapid progress on the Question Answering task. However, most of those datasets are in English, and the performances of state-of-the-art multilingual model s are significantly lower when evaluated on non-English data. Due to high data collection costs, it is not realistic to obtain annotated data for each language one desires to support. We propose a method to improve the Cross-lingual Question Answering performance without requiring additional annotated data, leveraging Question Generation models to produce synthetic samples in a cross-lingual fashion. We show that the proposed method allows to significantly outperform the baselines trained on English data only. We report a new state-of-the-art on four datasets: MLQA, XQuAD, SQuAD-it and PIAF (fr).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا