Do you want to publish a course? Click here

Knowledge Base Question Answering (KBQA) is to answer natural language questions posed over knowledge bases (KBs). This paper targets at empowering the IR-based KBQA models with the ability of numerical reasoning for answering ordinal constrained que stions. A major challenge is the lack of explicit annotations about numerical properties. To address this challenge, we propose a pretraining numerical reasoning model consisting of NumGNN and NumTransformer, guided by explicit self-supervision signals. The two modules are pretrained to encode the magnitude and ordinal properties of numbers respectively and can serve as model-agnostic plugins for any IR-based KBQA model to enhance its numerical reasoning ability. Extensive experiments on two KBQA benchmarks verify the effectiveness of our method to enhance the numerical reasoning ability for IR-based KBQA models.
Large pre-trained language models (PLMs) have led to great success on various commonsense question answering (QA) tasks in an end-to-end fashion. However, little attention has been paid to what commonsense knowledge is needed to deeply characterize t hese QA tasks. In this work, we proposed to categorize the semantics needed for these tasks using the SocialIQA as an example. Building upon our labeled social knowledge categories dataset on top of SocialIQA, we further train neural QA models to incorporate such social knowledge categories and relation information from a knowledge base. Unlike previous work, we observe our models with semantic categorizations of social knowledge can achieve comparable performance with a relatively simple model and smaller size compared to other complex approaches.
Considering the importance of building a good Visual Dialog (VD) Questioner, many researchers study the topic under a Q-Bot-A-Bot image-guessing game setting, where the Questioner needs to raise a series of questions to collect information of an undi sclosed image. Despite progress has been made in Supervised Learning (SL) and Reinforcement Learning (RL), issues still exist. Firstly, previous methods do not provide explicit and effective guidance for Questioner to generate visually related and informative questions. Secondly, the effect of RL is hampered by an incompetent component, i.e., the Guesser, who makes image predictions based on the generated dialogs and assigns rewards accordingly. To enhance VD Questioner: 1) we propose a Related entity enhanced Questioner (ReeQ) that generates questions under the guidance of related entities and learns entity-based questioning strategy from human dialogs; 2) we propose an Augmented Guesser that is strong and is optimized for VD especially. Experimental results on the VisDial v1.0 dataset show that our approach achieves state-of-the-art performance on both image-guessing task and question diversity. Human study further verifies that our model generates more visually related, informative and coherent questions.
Question Answering (QA) tasks requiring information from multiple documents often rely on a retrieval model to identify relevant information for reasoning. The retrieval model is typically trained to maximize the likelihood of the labeled supporting evidence. However, when retrieving from large text corpora such as Wikipedia, the correct answer can often be obtained from multiple evidence candidates. Moreover, not all such candidates are labeled as positive during annotation, rendering the training signal weak and noisy. This problem is exacerbated when the questions are unanswerable or when the answers are Boolean, since the model cannot rely on lexical overlap to make a connection between the answer and supporting evidence. We develop a new parameterization of set-valued retrieval that handles unanswerable queries, and we show that marginalizing over this set during training allows a model to mitigate false negatives in supporting evidence annotations. We test our method on two multi-document QA datasets, IIRC and HotpotQA. On IIRC, we show that joint modeling with marginalization improves model performance by 5.5 F1 points and achieves a new state-of-the-art performance of 50.5 F1. We also show that retrieval marginalization results in 4.1 QA F1 improvement over a non-marginalized baseline on HotpotQA in the fullwiki setting.
Transformer-based pre-trained models, such as BERT, have achieved remarkable results on machine reading comprehension. However, due to the constraint of encoding length (e.g., 512 WordPiece tokens), a long document is usually split into multiple chun ks that are independently read. It results in the reading field being limited to individual chunks without information collaboration for long document machine reading comprehension. To address this problem, we propose RoR, a read-over-read method, which expands the reading field from chunk to document. Specifically, RoR includes a chunk reader and a document reader. The former first predicts a set of regional answers for each chunk, which are then compacted into a highly-condensed version of the original document, guaranteeing to be encoded once. The latter further predicts the global answers from this condensed document. Eventually, a voting strategy is utilized to aggregate and rerank the regional and global answers for final prediction. Extensive experiments on two benchmarks QuAC and TriviaQA demonstrate the effectiveness of RoR for long document reading. Notably, RoR ranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time of submission (May 17th, 2021).
An overarching goal of natural language processing is to enable machines to communicate seamlessly with humans. However, natural language can be ambiguous or unclear. In cases of uncertainty, humans engage in an interactive process known as repair: a sking questions and seeking clarification until their uncertainty is resolved. We propose a framework for building a visually grounded question-asking model capable of producing polar (yes-no) clarification questions to resolve misunderstandings in dialogue. Our model uses an expected information gain objective to derive informative questions from an off-the-shelf image captioner without requiring any supervised question-answer data. We demonstrate our model's ability to pose questions that improve communicative success in a goal-oriented 20 questions game with synthetic and human answerers.
A major challenge of research on non-English machine reading for question answering (QA) is the lack of annotated datasets. In this paper, we present GermanQuAD, a dataset of 13,722 extractive question/answer pairs. To improve the reproducibility of the dataset creation approach and foster QA research on other languages, we summarize lessons learned and evaluate reformulation of question/answer pairs as a way to speed up the annotation process. An extractive QA model trained on GermanQuAD significantly outperforms multilingual models and also shows that machine-translated training data cannot fully substitute hand-annotated training data in the target language. Finally, we demonstrate the wide range of applications of GermanQuAD by adapting it to GermanDPR, a training dataset for dense passage retrieval (DPR), and train and evaluate one of the first non-English DPR models.
We tackle multi-choice question answering. Acquiring related commonsense knowledge to the question and options facilitates the recognition of the correct answer. However, the current reasoning models suffer from the noises in the retrieved knowledge. In this paper, we propose a novel encoding method which is able to conduct interception and soft filtering. This contributes to the harvesting and absorption of representative information with less interference from noises. We experiment on CommonsenseQA. Experimental results illustrate that our method yields substantial and consistent improvements compared to the strong Bert, RoBERTa and Albert-based baselines.
In simple open-domain question answering (QA), dense retrieval has become one of the standard approaches for retrieving the relevant passages to infer an answer. Recently, dense retrieval also achieved state-of-the-art results in multi-hop QA, where aggregating information from multiple pieces of information and reasoning over them is required. Despite their success, dense retrieval methods are computationally intensive, requiring multiple GPUs to train. In this work, we introduce a hybrid (lexical and dense) retrieval approach that is highly competitive with the state-of-the-art dense retrieval models, while requiring substantially less computational resources. Additionally, we provide an in-depth evaluation of dense retrieval methods on limited computational resource settings, something that is missing from the current literature.
Weakly-supervised table question-answering (TableQA) models have achieved state-of-art performance by using pre-trained BERT transformer to jointly encoding a question and a table to produce structured query for the question. However, in practical se ttings TableQA systems are deployed over table corpora having topic and word distributions quite distinct from BERT's pretraining corpus. In this work we simulate the practical topic shift scenario by designing novel challenge benchmarks WikiSQL-TS and WikiTable-TS, consisting of train-dev-test splits in five distinct topic groups, based on the popular WikiSQL and WikiTable-Questions datasets. We empirically show that, despite pre-training on large open-domain text, performance of models degrades significantly when they are evaluated on unseen topics. In response, we propose T3QA (Topic Transferable Table Question Answering) a pragmatic adaptation framework for TableQA comprising of: (1) topic-specific vocabulary injection into BERT, (2) a novel text-to-text transformer generator (such as T5, GPT2) based natural language question generation pipeline focused on generating topic-specific training data, and (3) a logical form re-ranker. We show that T3QA provides a reasonably good baseline for our topic shift benchmarks. We believe our topic split benchmarks will lead to robust TableQA solutions that are better suited for practical deployment
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا