يهدف السبب السببي إلى التنبؤ بالسيناريوهات المستقبلية التي قد يكون سببها الإجراءات الملحوظة.ومع ذلك، فإن أساليب المنطق السببية الموجودة تتعامل مع الضغط على مستوى الكلمة.في هذه الورقة، نقترح طريقة التفكير السببية السببية على مستوى الحدث وإظهار استخدامها في مهمة توليد التأثير.على وجه الخصوص، نقوم بتكييف أزواج الأحداث التي تمت ملاحظتها في السبب في شبكة سببية حدث، والتي تصف التبعيات السببية.بالنظر إلى جملة مدخلات، يتم استرداد مجموعة فرعية سببية من شبكة السببية الحدث ويتم ترميزها مع آلية اهتمامات الرسم البياني، من أجل دعم التفكير الأفضل للآثار المحتملة.ثم يتم تحديد حدث التأثير الأكثر احتمالا من الفحص الفرعي السببي ويستخدم كإرشادات لتوليد جملة تأثير.تظهر التجارب أن طريقتنا تولد جمل أكثر معقولة من مختلف المنافسين المصممين بشكل جيد.
Causal reasoning aims to predict the future scenarios that may be caused by the observed actions. However, existing causal reasoning methods deal with causalities on the word level. In this paper, we propose a novel event-level causal reasoning method and demonstrate its use in the task of effect generation. In particular, we structuralize the observed cause-effect event pairs into an event causality network, which describes causality dependencies. Given an input cause sentence, a causal subgraph is retrieved from the event causality network and is encoded with the graph attention mechanism, in order to support better reasoning of the potential effects. The most probable effect event is then selected from the causal subgraph and is used as guidance to generate an effect sentence. Experiments show that our method generates more reasonable effect sentences than various well-designed competitors.
References used
https://aclanthology.org/
We perform neural machine translation of sentence fragments in order to create large amounts of training data for English grammatical error correction. Our method aims at simulating mistakes made by second language learners, and produces a wider rang
We consider the problem of using observational data to estimate the causal effects of linguistic properties. For example, does writing a complaint politely lead to a faster response time? How much will a positive product review increase sales? This p
Abstract Recent improvements in the predictive quality of natural language processing systems are often dependent on a substantial increase in the number of model parameters. This has led to various attempts of compressing such models, but existing m
Reference-based automatic evaluation metrics are notoriously limited for NLG due to their inability to fully capture the range of possible outputs. We examine a referenceless alternative: evaluating the adequacy of English sentences generated from Ab
This paper presents a global summarization method for live sport commentaries for which we have a human-written summary available. This method is based on a neural generative summarizer. The amount of data available for training is limited compared t