Do you want to publish a course? Click here

Model Compression for Domain Adaptation through Causal Effect Estimation

ضغط نموذج لتكييف المجال من خلال تقدير التأثير السببية

209   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abstract Recent improvements in the predictive quality of natural language processing systems are often dependent on a substantial increase in the number of model parameters. This has led to various attempts of compressing such models, but existing methods have not considered the differences in the predictive power of various model components or in the generalizability of the compressed models. To understand the connection between model compression and out-of-distribution generalization, we define the task of compressing language representation models such that they perform best in a domain adaptation setting. We choose to address this problem from a causal perspective, attempting to estimate the average treatment effect (ATE) of a model component, such as a single layer, on the model's predictions. Our proposed ATE-guided Model Compression scheme (AMoC), generates many model candidates, differing by the model components that were removed. Then, we select the best candidate through a stepwise regression model that utilizes the ATE to predict the expected performance on the target domain. AMoC outperforms strong baselines on dozens of domain pairs across three text classification and sequence tagging tasks.1



References used
https://aclanthology.org/
rate research

Read More

Domain Adaptation is widely used in practical applications of neural machine translation, which aims to achieve good performance on both general domain and in-domain data. However, the existing methods for domain adaptation usually suffer from catast rophic forgetting, large domain divergence, and model explosion. To address these three problems, we propose a method of divide and conquer'' which is based on the importance of neurons or parameters for the translation model. In this method, we first prune the model and only keep the important neurons or parameters, making them responsible for both general-domain and in-domain translation. Then we further train the pruned model supervised by the original whole model with knowledge distillation. Last we expand the model to the original size and fine-tune the added parameters for the in-domain translation. We conducted experiments on different language pairs and domains and the results show that our method can achieve significant improvements compared with several strong baselines.
We study the problem of domain adaptation in Neural Machine Translation (NMT) when domain-specific data cannot be shared due to confidentiality or copyright issues. As a first step, we propose to fragment data into phrase pairs and use a random sampl e to fine-tune a generic NMT model instead of the full sentences. Despite the loss of long segments for the sake of confidentiality protection, we find that NMT quality can considerably benefit from this adaptation, and that further gains can be obtained with a simple tagging technique.
Cross-domain Named Entity Recognition (NER) transfers the NER knowledge from high-resource domains to the low-resource target domain. Due to limited labeled resources and domain shift, cross-domain NER is a challenging task. To address these challeng es, we propose a progressive domain adaptation Knowledge Distillation (KD) approach -- PDALN. It achieves superior domain adaptability by employing three components: (1) Adaptive data augmentation techniques, which alleviate cross-domain gap and label sparsity simultaneously; (2) Multi-level Domain invariant features, derived from a multi-grained MMD (Maximum Mean Discrepancy) approach, to enable knowledge transfer across domains; (3) Advanced KD schema, which progressively enables powerful pre-trained language models to perform domain adaptation. Extensive experiments on four benchmarks show that PDALN can effectively adapt high-resource domains to low-resource target domains, even if they are diverse in terms and writing styles. Comparison with other baselines indicates the state-of-the-art performance of PDALN.
The rise of pre-trained language models has yielded substantial progress in the vast majority of Natural Language Processing (NLP) tasks. However, a generic approach towards the pre-training procedure can naturally be sub-optimal in some cases. Parti cularly, fine-tuning a pre-trained language model on a source domain and then applying it to a different target domain, results in a sharp performance decline of the eventual classifier for many source-target domain pairs. Moreover, in some NLP tasks, the output categories substantially differ between domains, making adaptation even more challenging. This, for example, happens in the task of aspect extraction, where the aspects of interest of reviews of, e.g., restaurants or electronic devices may be very different. This paper presents a new fine-tuning scheme for BERT, which aims to address the above challenges. We name this scheme DILBERT: Domain Invariant Learning with BERT, and customize it for aspect extraction in the unsupervised domain adaptation setting. DILBERT harnesses the categorical information of both the source and the target domains to guide the pre-training process towards a more domain and category invariant representation, thus closing the gap between the domains. We show that DILBERT yields substantial improvements over state-of-the-art baselines while using a fraction of the unlabeled data, particularly in more challenging domain adaptation setups.
Production NMT systems typically need to serve niche domains that are not covered by adequately large and readily available parallel corpora. As a result, practitioners often fine-tune general purpose models to each of the domains their organisation caters to. The number of domains however can often become large, which in combination with the number of languages that need serving can lead to an unscalable fleet of models to be developed and maintained. We propose Multi Dimensional Tagging, a method for fine-tuning a single NMT model on several domains simultaneously, thus drastically reducing development and maintenance costs. We run experiments where a single MDT model compares favourably to a set of SOTA specialist models, even when evaluated on the domain those baselines have been fine-tuned on. Besides BLEU, we report human evaluation results. MDT models are now live at Booking.com, powering an MT engine that serves millions of translations a day in over 40 different languages.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا