تختلف اللغات من حيث غياب أو وجود ميزات جنسانية، وعدد الفصول الجنسانية وما إذا كانت الميزات الجنسانية ملحوظ بشكل صريح.هذه الاختلافات الشاملة اللغوية يمكن أن تؤدي إلى الغموض التي يصعب حلها، خاصة بالنسبة لأنظمة MT على مستوى الجملة.إن تحديد الغموض وقرته لاحقا هو مهمة صعبة لا توجد حاليا أي موارد أو مجموعات تحدي محددة متاحة.في هذه الورقة، نقدم نوع الجنس، وهو تحدي إنجليزي - إيطالي يحدد يركز على حل الظواهر الجنسانية الطبيعية من خلال توفير علامات الجنسية على مستوى الكلمات على جانب المصدر الإنجليزي والترجمات البديلة الجنسية متعددة الجنسيات، عند الحاجة، على الهدف الإيطاليالجانب.
Languages differ in terms of the absence or presence of gender features, the number of gender classes and whether and where gender features are explicitly marked. These cross-linguistic differences can lead to ambiguities that are difficult to resolve, especially for sentence-level MT systems. The identification of ambiguity and its subsequent resolution is a challenging task for which currently there aren't any specific resources or challenge sets available. In this paper, we introduce gENder-IT, an English--Italian challenge set focusing on the resolution of natural gender phenomena by providing word-level gender tags on the English source side and multiple gender alternative translations, where needed, on the Italian target side.
References used
https://aclanthology.org/
With language models being deployed increasingly in the real world, it is essential to address the issue of the fairness of their outputs. The word embedding representations of these language models often implicitly draw unwanted associations that fo
AbstractMachine translation (MT) technology has facilitated our daily tasks by providing accessible shortcuts for gathering, processing, and communicating information. However, it can suffer from biases that harm users and society at large. As a rela
Natural Language Processing (NLP) systems are at the heart of many critical automated decision-making systems making crucial recommendations about our future world. Gender bias in NLP has been well studied in English, but has been less studied in oth
Gender bias is a frequent occurrence in NLP-based applications, especially pronounced in gender-inflected languages. Bias can appear through associations of certain adjectives and animate nouns with the natural gender of referents, but also due to un
Internet search affects people's cognition of the world, so mitigating biases in search results and learning fair models is imperative for social good. We study a unique gender bias in image search in this work: the search images are often gender-imb