تهدف الملخصات الزمنية (TLS) إلى توليد قائمة موجزة من الأحداث الموضحة في مصادر مثل المقالات الإخبارية.ومع ذلك، فإن النظم الحالية لا توفر طريقة كافية للتكيف مع مجالات جديدة ولا تركز على جوانب الاهتمام لمستخدم معين.لذلك، نقترح طريقة للتعلم بشكل تفاعلي TLS abractive باستخدام التعزيز التعلم (RL).نحدد وظيفة المكافأة المركبة واستخدام RL Tune Tune Tune Tune Abstractive Multi-Document Summarisation (MDS)، والتي تتجنب الحاجة إلى التدريب باستخدام الملخصات المرجعية.سيتم تعلم أحد الوظائف الفرعية بشكل تفاعلي من ملاحظات المستخدم لضمان الاتساق بين مطالب المستخدمين والجدول الزمني الذي تم إنشاؤه.تساهم الوظائف الفرعية الأخرى في التماسك الموضعي والطلاقة اللغوية.نقول تجارب لتقييم ما إذا كان نهجنا قد يؤدي إلى توليد مواقع زمنية دقيقة ودقيقة مصممة لكل مستخدم.
Timeline Summarisation (TLS) aims to generate a concise, time-ordered list of events described in sources such as news articles. However, current systems do not provide an adequate way to adapt to new domains nor to focus on the aspects of interest to a particular user. Therefore, we propose a method for interactively learning abstractive TLS using Reinforcement Learning (RL). We define a compound reward function and use RL to fine-tune an abstractive Multi-document Summarisation (MDS) model, which avoids the need to train using reference summaries. One of the sub-reward functions will be learned interactively from user feedback to ensure the consistency between users' demands and the generated timeline. The other sub-reward functions contribute to topical coherence and linguistic fluency. We plan experiments to evaluate whether our approach could generate accurate and precise timelines tailored for each user.
References used
https://aclanthology.org/
Persuasion dialogue system reflects the machine's ability to make strategic moves beyond verbal communication, and therefore differentiates itself from task-oriented or open-domain dialogues and has its own unique values. However, the repetition and
Low-resource Relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce. Existing works either utilize self-training scheme to generate pseudo labels that will cause the gradual drift problem
It is challenging to design profitable and practical trading strategies, as stock price movements are highly stochastic, and the market is heavily influenced by chaotic data across sources like news and social media. Existing NLP approaches largely t
Deep reinforcement learning (RL) methods often require many trials before convergence, and no direct interpretability of trained policies is provided. In order to achieve fast convergence and interpretability for the policy in RL, we propose a novel
Common acquisition functions for active learning use either uncertainty or diversity sampling, aiming to select difficult and diverse data points from the pool of unlabeled data, respectively. In this work, leveraging the best of both worlds, we prop