غالبا ما تتطلب طرق تعلم التعلم العميق (RL) العديد من التجارب قبل التقارب، ولا يتم توفير إمكانية التفسير المباشر للسياسات المدربة.من أجل تحقيق التقارب السريع والتفسيرية للسياسة في RL، نقترح طريقة RL رواية للألعاب القائمة على النصوص مع إطار عمل رمزي مؤخرا يسمى الشبكة العصبية المنطقية، والتي يمكن أن تتعلم القواعد الرمزية والتفسيرية في شبكتها المختلفة.الطريقة الأولى لاستخراج الحقائق المنطقية من الدرجة الأولى من مراقبة النص وشبكة معنى الكلمة الخارجية (Congernet)، ثم قم بتدريب سياسة في الشبكة مع مشغلين منطقي قابل التفسير مباشرة.تظهر النتائج التجريبية لدينا التدريب RL مع الأسلوب المقترح بشكل أسرع بكثير من الأساليب الخلية العصبية الأخرى في مؤشر TextWorld.
Deep reinforcement learning (RL) methods often require many trials before convergence, and no direct interpretability of trained policies is provided. In order to achieve fast convergence and interpretability for the policy in RL, we propose a novel RL method for text-based games with a recent neuro-symbolic framework called Logical Neural Network, which can learn symbolic and interpretable rules in their differentiable network. The method is first to extract first-order logical facts from text observation and external word meaning network (ConceptNet), then train a policy in the network with directly interpretable logical operators. Our experimental results show RL training with the proposed method converges significantly faster than other state-of-the-art neuro-symbolic methods in a TextWorld benchmark.
References used
https://aclanthology.org/
First-order meta-learning algorithms have been widely used in practice to learn initial model parameters that can be quickly adapted to new tasks due to their efficiency and effectiveness. However, existing studies find that meta-learner can overfit
Recently, language models (LMs) have achieved significant performance on many NLU tasks, which has spurred widespread interest for their possible applications in the scientific and social area. However, LMs have faced much criticism of whether they a
We present a system for learning generalized, stereotypical patterns of events---or schemas''---from natural language stories, and applying them to make predictions about other stories. Our schemas are represented with Episodic Logic, a logical form
It is challenging to design profitable and practical trading strategies, as stock price movements are highly stochastic, and the market is heavily influenced by chaotic data across sources like news and social media. Existing NLP approaches largely t
Timeline Summarisation (TLS) aims to generate a concise, time-ordered list of events described in sources such as news articles. However, current systems do not provide an adequate way to adapt to new domains nor to focus on the aspects of interest t