Do you want to publish a course? Click here

Supporting Spanish Writers using Automated Feedback

دعم الكتاب الإسبانيين باستخدام ردود الفعل الآلية

217   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We present a tool that provides automated feedback to students studying Spanish writing. The feedback is given for four categories: topic development, coherence, writing conventions, and essay organization. The tool is made freely available via a Google Docs add-on. A small user study with third-level students in Mexico shows that students found the tool generally helpful and that most of them plan to continue using it as they work to improve their writing skills.



References used
https://aclanthology.org/
rate research

Read More

The Covid pandemic upended translation teaching globally. The forced move to online teaching represented a gargantuan challenge for anyone only experienced in face-to-face teaching. Online translation teaching requires distinct approaches to guarante e that students can reach the targeted learning goals. This paper presents a literature review on the provision of effective feedback in the light of these drastic changes in translation teaching as well as a description as how existing research on online feedback for translation training has been applied to the design of online courses at the translation program at Rutgers University.
Translating text into a language unknown to the text's author, dubbed outbound translation, is a modern need for which the user experience has significant room for improvement, beyond the basic machine translation facility. We demonstrate this by sho wing three ways in which user confidence in the outbound translation, as well as its overall final quality, can be affected: backward translation, quality estimation (with alignment) and source paraphrasing. In this paper, we describe an experiment on outbound translation from English to Czech and Estonian. We examine the effects of each proposed feedback module and further focus on how the quality of machine translation systems influence these findings and the user perception of success. We show that backward translation feedback has a mixed effect on the whole process: it increases user confidence in the produced translation, but not the objective quality.
With counterfactual bandit learning, models can be trained based on positive and negative feedback received for historical predictions, with no labeled data needed. Such feedback is often available in real-world dialog systems, however, the modulariz ed architecture commonly used in large-scale systems prevents the direct application of such algorithms. In this paper, we study the feedback attribution problem that arises when using counterfactual bandit learning for multi-domain spoken language understanding. We introduce an experimental setup to simulate the problem on small-scale public datasets, propose attribution methods inspired by multi-agent reinforcement learning and evaluate them against multiple baselines. We find that while directly using overall feedback leads to disastrous performance, our proposed attribution methods can allow training competitive models from user feedback.
Giving feedback to students is not just about marking their answers as correct or incorrect, but also finding mistakes in their thought process that led them to that incorrect answer. In this paper, we introduce a machine learning technique for mista ke captioning, a task that attempts to identify mistakes and provide feedback meant to help learners correct these mistakes. We do this by training a sequence-to-sequence network to generate this feedback based on domain experts. To evaluate this system, we explore how it can be used on a Linguistics assignment studying Grimm's Law. We show that our approach generates feedback that outperforms a baseline on a set of automated NLP metrics. In addition, we perform a series of case studies in which we examine successful and unsuccessful system outputs.
We investigate the question of how adaptive feedback from a virtual agent impacts the linguistic input of the user in a shared world game environment. To do so, we carry out an exploratory pilot study to observe how individualized linguistic feedback affects the user's speech input. We introduce a speech-controlled game, Apple Core-dination, in which an agent learns complex tasks using a base knowledge of simple actions. The agent is equipped with a learning mechanism for mapping new commands to sequences of simple actions, as well as the ability to incorporate user input into written responses. The agent repeatedly shares its internal knowledge state by responding to what it knows and does not know about language meaning and the shared environment. Our paper focuses on the linguistic feedback loop in order to analyze the nature of user input. Feedback from the agent is provided in the form of visual movement and written linguistic responses. Particular attention is given to incorporating user input into agent responses and updating the speech-to-action mappings based on commands provided by the user. Through our pilot study, we analyze task success and compare the lexical features of user input. Results show variation in input length and lexical variety across users, suggesting a correlation between the two that can be studied further.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا