Do you want to publish a course? Click here

ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction

في أسرع وقت ممكن: مجموعة بيانات مراجعة صينية نحو تحليل المشاعر الفئة للأسف

377   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two essential tasks to detect the fine-to-coarse sentiment polarities. ACSA and RP are highly correlated and usually employed jointly in real-world e-commerce scenarios. While most public datasets are constructed for ACSA and RP separately, which may limit the further exploitation of both tasks. To address the problem and advance related researches, we present a large-scale Chinese restaurant review dataset ASAP including 46, 730 genuine reviews from a leading online-to-offline (O2O) e-commerce platform in China. Besides a 5-star scale rating, each review is manually annotated according to its sentiment polarities towards 18 pre-defined aspect categories. We hope the release of the dataset could shed some light on the field of sentiment analysis. Moreover, we propose an intuitive yet effective joint model for ACSA and RP. Experimental results demonstrate that the joint model outperforms state-of-the-art baselines on both tasks.



References used
https://aclanthology.org/
rate research

Read More

Aspect category sentiment analysis has attracted increasing research attention. The dominant methods make use of pre-trained language models by learning effective aspect category-specific representations, and adding specific output layers to its pre- trained representation. We consider a more direct way of making use of pre-trained language models, by casting the ACSA tasks into natural language generation tasks, using natural language sentences to represent the output. Our method allows more direct use of pre-trained knowledge in seq2seq language models by directly following the task setting during pre-training. Experiments on several benchmarks show that our method gives the best reported results, having large advantages in few-shot and zero-shot settings.
Aspect Category Sentiment Analysis (ACSA), which aims to identify fine-grained sentiment polarities of the aspect categories discussed in user reviews. ACSA is challenging and costly when conducting it into real-world applications, that mainly due to the following reasons: 1.) Labeling the fine-grained ACSA data is often labor-intensive. 2.) The aspect categories will be dynamically updated and adjusted with the development of application scenarios, which means that the data must be relabeled frequently. 3.) Due to the increase of aspect categories, the model must be retrained frequently to fast adapt to the newly added aspect category data. To overcome the above-mentioned problems, we introduce a novel Meta Multi-Task Learning (MMTL) approach, that frame ACSA tasks as a meta-learning problem (i.e., regarding aspect-category sentiment polarity classification problems as the different training tasks for meta-learning) to learn an ideal and shareable initialization for the multi-task learning model that can be adapted to new ACSA tasks efficiently and effectively. Experiment results show that the proposed approach significantly outperforms the strong pre-trained transformer-based baseline model, especially, in the case of less labeled fine-grained training data.
In this paper, we investigate the Aspect Category Sentiment Analysis (ACSA) task from a novel perspective by exploring a Beta Distribution guided aspect-aware graph construction based on external knowledge. That is, we are no longer entangled about h ow to laboriously search the sentiment clues for coarse-grained aspects from the context, but how to preferably find the words highly related to the aspects in the context and determine their importance based on the public knowledge base. In this way, the contextual sentiment clues can be explicitly tracked in ACSA for the aspects in the light of these aspect-related words. To be specific, we first regard each aspect as a pivot to derive aspect-aware words that are highly related to the aspect from external affective commonsense knowledge. Then, we employ Beta Distribution to educe the aspect-aware weight, which reflects the importance to the aspect, for each aspect-aware word. Afterward, the aspect-aware words are served as the substitutes of the coarse-grained aspect to construct graphs for leveraging the aspect-related contextual sentiment dependencies in ACSA. Experiments on 6 benchmark datasets show that our approach significantly outperforms the state-of-the-art baseline methods.
Sentiment analysis aims to detect the overall sentiment, i.e., the polarity of a sentence, paragraph, or text span, without considering the entities mentioned and their aspects. Aspect-based sentiment analysis aims to extract the aspects of the given target entities and their respective sentiments. Prior works formulate this as a sequence tagging problem or solve this task using a span-based extract-then-classify framework where first all the opinion targets are extracted from the sentence, and then with the help of span representations, the targets are classified as positive, negative, or neutral. The sequence tagging problem suffers from issues like sentiment inconsistency and colossal search space. Whereas, Span-based extract-then-classify framework suffers from issues such as half-word coverage and overlapping spans. To overcome this, we propose a similar span-based extract-then-classify framework with a novel and improved heuristic. Experiments on the three benchmark datasets (Restaurant14, Laptop14, Restaurant15) show our model consistently outperforms the current state-of-the-art. Moreover, we also present a novel supervised movie reviews dataset (Movie20) and a pseudo-labeled movie reviews dataset (moviesLarge) made explicitly for this task and report the results on the novel Movie20 dataset as well.
Dialogue summarization has drawn much attention recently. Especially in the customer service domain, agents could use dialogue summaries to help boost their works by quickly knowing customer's issues and service progress. These applications require s ummaries to contain the perspective of a single speaker and have a clear topic flow structure, while neither are available in existing datasets. Therefore, in this paper, we introduce a novel Chinese dataset for Customer Service Dialogue Summarization (CSDS). CSDS improves the abstractive summaries in two aspects: (1) In addition to the overall summary for the whole dialogue, role-oriented summaries are also provided to acquire different speakers' viewpoints. (2) All the summaries sum up each topic separately, thus containing the topic-level structure of the dialogue. We define tasks in CSDS as generating the overall summary and different role-oriented summaries for a given dialogue. Next, we compare various summarization methods on CSDS, and experiment results show that existing methods are prone to generate redundant and incoherent summaries. Besides, the performance becomes much worse when analyzing the performance on role-oriented summaries and topic structures. We hope that this study could benchmark Chinese dialogue summarization and benefit further studies.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا