وقد شكلت الشيخوخة السكان تحديا للعديد من البلدان بما في ذلك تايوان، ومعهم يأتون قضية الرعاية الطويلة الأجل.بالنظر إلى السياق الحالي، كان الهدف من هذه الدراسة هو استكشاف الفرعي المناقش أعلاه في مجال الرعاية الطويلة الأجل، وتحديد ميزاته من خلال NLP.تقدمت هذه الدراسة TF-IDF، نموذج الانحدار اللوجستي، ومصنف البايز الساذج لمعالجة البيانات.باختصار، أظهرت النتائج أنها وصلت إلى أفضل درجة F1 من 0.920 في تحديد الهوية، وأفضل دقة 0.708 في التصنيف.يمكن استخدام نتائج هذه الدراسة كمرجع للتطبيقات المتعلقة بالرعاية الطويلة الأجل في المستقبل.
Aging populations have posed a challenge to many countries including Taiwan, and with them come the issue of long-term care. Given the current context, the aim of this study was to explore the hotly-discussed subtopics in the field of long-term care, and identify its features through NLP. This study applied TF-IDF, the Logistic Regression model, and the Naive Bayes classifier to process data. In sum, the results showed that it reached a best F1-score of 0.920 in identification, and a best accuracy of 0.708 in classification. The results of this study could be used as a reference for future long-term care related applications.
References used
https://aclanthology.org/
Abstract Text classification is a widely studied problem and has broad applications. In many real-world problems, the number of texts for training classification models is limited, which renders these models prone to overfitting. To address this prob
Transformer-based methods are appealing for multilingual text classification, but common research benchmarks like XNLI (Conneau et al., 2018) do not reflect the data availability and task variety of industry applications. We present an empirical comp
Text style can reveal sensitive attributes of the author (e.g. age and race) to the reader, which can, in turn, lead to privacy violations and bias in both human and algorithmic decisions based on text. For example, the style of writing in job applic
Text classifiers are regularly applied to personal texts, leaving users of these classifiers vulnerable to privacy breaches. We propose a solution for privacy-preserving text classification that is based on Convolutional Neural Networks (CNNs) and Se
In this paper, we explore text classification with extremely weak supervision, i.e., only relying on the surface text of class names. This is a more challenging setting than the seed-driven weak supervision, which allows a few seed words per class. W