يمكن أن تكشف نمط النص أن يكشف السمات الحساسة للمؤلف (E.G. العمر والسباق) للقارئ، والذي يمكن، بدوره، يؤدي إلى انتهاكات الخصوصية والتحيز في كل من القرارات البشرية والخضارات على أساس النص. على سبيل المثال، قد تكشف أسلوب الكتابة في تطبيقات الوظائف عن سمات المرشح المحمية التي يمكن أن تؤدي إلى التحيز في اتخاذ القرارات، بغض النظر عما إذا كانت القرارات التوصية مجددا أو من قبل البشر. نقترح إطارا أساسيا يستند إلى VAE يهدف إلى توضيح الملامح الأسلوبية للنص الذي تم إنشاؤه بشريا من خلال نقل النمط، عن طريق إعادة كتابة النص نفسه تلقائيا. نقدي، يعمل إطار عملنا على فكرة النمط الذي تم توعيته بطريقة مرنة تمكن مفاهيمين متميزين من النمط المباشر: (1) الحد الأدنى من الفكرة التي تتقاطع بشكل فعال أن الأنماط المختلفة التي شوهدت في التدريب، و (2) مفهوم أقصى يسعى إلى التباطؤ بإضافة ميزات أسلوبية لجميع السمات الحساسة إلى النص، ساري المفعول، حوسبة نقابة الأساليب. يمكن استخدام إطار عملنا النمط الخاص بنا لأغراض متعددة، ومع ذلك، فإننا نوضح فعاليته في تحسين نزاهة المصب المصب. نقوم أيضا بإجراء دراسة شاملة عن تأثير تجمع الأنماط على الطلاقة والاتساق الدلالي، وإزالة السمة من النص، في اثنين وثلاث نقل نمط النطاق.
Text style can reveal sensitive attributes of the author (e.g. age and race) to the reader, which can, in turn, lead to privacy violations and bias in both human and algorithmic decisions based on text. For example, the style of writing in job applications might reveal protected attributes of the candidate which could lead to bias in hiring decisions, regardless of whether hiring decisions are made algorithmically or by humans. We propose a VAE-based framework that obfuscates stylistic features of human-generated text through style transfer, by automatically re-writing the text itself. Critically, our framework operationalizes the notion of obfuscated style in a flexible way that enables two distinct notions of obfuscated style: (1) a minimal notion that effectively intersects the various styles seen in training, and (2) a maximal notion that seeks to obfuscate by adding stylistic features of all sensitive attributes to text, in effect, computing a union of styles. Our style-obfuscation framework can be used for multiple purposes, however, we demonstrate its effectiveness in improving the fairness of downstream classifiers. We also conduct a comprehensive study on style-pooling's effect on fluency, semantic consistency, and attribute removal from text, in two and three domain style transfer.
References used
https://aclanthology.org/
Learning a good latent representation is essential for text style transfer, which generates a new sentence by changing the attributes of a given sentence while preserving its content. Most previous works adopt disentangled latent representation learn
Unsupervised style transfer models are mainly based on an inductive learning approach, which represents the style as embeddings, decoder parameters, or discriminator parameters and directly applies these general rules to the test cases. However, the
Text style transfer involves rewriting the content of a source sentence in a target style. Despite there being a number of style tasks with available data, there has been limited systematic discussion of how text style datasets relate to each other.
In most cases, the lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task. In this paper, we explore training algorithms that instead optimize reward functions that explicitly consider differ
Text style transfer aims to controllably generate text with targeted stylistic changes while maintaining core meaning from the source sentence constant. Many of the existing style transfer benchmarks primarily focus on individual high-level semantic