في هذه المساهمة، وصفنا النظام الذي قدمه فريق Polyu CBS-Comp في المهمة 1 من Semeval 2021، حيث كان الهدف هو تقدير تعقيد الكلمات في سياق عقوبة معينة.نظامنا العلوي، بناء على مزيج من ميزات المعجميات والجنسية، والكلمات الميزات والمشتقات المحولات وعلى زيادة التراجع، يحقق درجة الارتباط أعلى من 0.754 على التراكب الفرعي 1 للكلمات الفردية و 0.659 على المراكب الفرعي 2 لتعبيرات متعددة الكلماتوبعد
In this contribution, we describe the system presented by the PolyU CBS-Comp Team at the Task 1 of SemEval 2021, where the goal was the estimation of the complexity of words in a given sentence context. Our top system, based on a combination of lexical, syntactic, word embeddings and Transformers-derived features and on a Gradient Boosting Regressor, achieves a top correlation score of 0.754 on the subtask 1 for single words and 0.659 on the subtask 2 for multiword expressions.
References used
https://aclanthology.org/
This paper describes our contribution to SemEval 2021 Task 1 (Shardlow et al., 2021): Lexical Complexity Prediction. In our approach, we leverage the ELECTRA model and attempt to mirror the data annotation scheme. Although the task is a regression ta
This paper describes team LCP-RIT's submission to the SemEval-2021 Task 1: Lexical Complexity Prediction (LCP). The task organizers provided participants with an augmented version of CompLex (Shardlow et al., 2020), an English multi-domain dataset in
This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in wh
This paper describes a system submitted by team BigGreen to LCP 2021 for predicting the lexical complexity of English words in a given context. We assemble a feature engineering-based model with a deep neural network model founded on BERT. While BERT
Lexical complexity plays an important role in reading comprehension. lexical complexity prediction (LCP) can not only be used as a part of Lexical Simplification systems, but also as a stand-alone application to help people better reading. This paper