توضح هذه الورقة تقديم فريق LCP-RIT إلى مهمة Semeval-2021 1: تنبؤ التعقيد المعجمي (LCP).قدم منظمو المهام للمشاركين نسخة معدية من المعقد (Shardlow et al.، 2020)، ومجموعة بيانات إنجليزية متعددة المجالات التي تم تفاحها الكلمات في السياق فيما يتعلق بعقودها باستخدام مقياس ليكرت خمس نقاط.يستخدم نظامنا الانحدار اللوجستي والمجموعة واسعة من الميزات اللغوية (على سبيل المثالنقوم بتحليل تأثير الميزات اللغوية المختلفة على أداء التصنيف ونقوم بتقييم النتائج من حيث الخطأ المطلق، ويعني الخطأ التربيعي، وارتباط بيرسون، وارتباط سبيرمان.
This paper describes team LCP-RIT's submission to the SemEval-2021 Task 1: Lexical Complexity Prediction (LCP). The task organizers provided participants with an augmented version of CompLex (Shardlow et al., 2020), an English multi-domain dataset in which words in context were annotated with respect to their complexity using a five point Likert scale. Our system uses logistic regression and a wide range of linguistic features (e.g. psycholinguistic features, n-grams, word frequency, POS tags) to predict the complexity of single words in this dataset. We analyze the impact of different linguistic features on the classification performance and we evaluate the results in terms of mean absolute error, mean squared error, Pearson correlation, and Spearman correlation.
References used
https://aclanthology.org/
In this contribution, we describe the system presented by the PolyU CBS-Comp Team at the Task 1 of SemEval 2021, where the goal was the estimation of the complexity of words in a given sentence context. Our top system, based on a combination of lexic
This paper describes our contribution to SemEval 2021 Task 1 (Shardlow et al., 2021): Lexical Complexity Prediction. In our approach, we leverage the ELECTRA model and attempt to mirror the data annotation scheme. Although the task is a regression ta
This paper revisits feature engineering approaches for predicting the complexity level of English words in a particular context using regression techniques. Our best submission to the Lexical Complexity Prediction (LCP) shared task was ranked 3rd out
This paper describes our submission to the SemEval-2021 shared task on Lexical Complexity Prediction. We approached it as a regression problem and present an ensemble combining four systems, one feature-based and three neural with fine-tuning, freque
This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in wh