تتميز هذه المراجعات الورقية بهذه الأساليب الهندسية للتنبؤ بمستوى تعقيد الكلمات الإنجليزية في سياق معين باستخدام تقنيات الانحدار.احتلت أفضل طلب لدينا في مهمة التعقيد المعجمية (LCP) المرتبة الثالثة من 48 شركة للمهمة الفرعية 1 وحققت معاملات ارتباط بيرسون من 0.779 و 0.809 لكلمات واحدة وتعبيرات متعددة الكلمات على التوالي.الاستنتاج هو أن مزيج من الميزات المعجمية والسياقية والدلية لا يزال بإمكانه إنتاج خطوط خطوط خطوط خطوط قوية عند مقارنتها ضد الحكم الإنساني.
This paper revisits feature engineering approaches for predicting the complexity level of English words in a particular context using regression techniques. Our best submission to the Lexical Complexity Prediction (LCP) shared task was ranked 3rd out of 48 systems for sub-task 1 and achieved Pearson correlation coefficients of 0.779 and 0.809 for single words and multi-word expressions respectively. The conclusion is that a combination of lexical, contextual and semantic features can still produce strong baselines when compared against human judgement.
References used
https://aclanthology.org/
This paper describes team LCP-RIT's submission to the SemEval-2021 Task 1: Lexical Complexity Prediction (LCP). The task organizers provided participants with an augmented version of CompLex (Shardlow et al., 2020), an English multi-domain dataset in
In this paper, we propose a method of fusing sentence information and word frequency information for the SemEval 2021 Task 1-Lexical Complexity Prediction (LCP) shared task. In our system, the sentence information comes from the RoBERTa model, and th
This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in wh
In this contribution, we describe the system presented by the PolyU CBS-Comp Team at the Task 1 of SemEval 2021, where the goal was the estimation of the complexity of words in a given sentence context. Our top system, based on a combination of lexic
This paper describes a system submitted by team BigGreen to LCP 2021 for predicting the lexical complexity of English words in a given context. We assemble a feature engineering-based model with a deep neural network model founded on BERT. While BERT