Do you want to publish a course? Click here

Alejandro Mosquera at SemEval-2021 Task 1: Exploring Sentence and Word Features for Lexical Complexity Prediction

Alejandro Mosquera في مهمة Semeval-2021 1: استكشاف الجملة وملفات كلمة التنبؤ التعقيد المعجمي

294   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper revisits feature engineering approaches for predicting the complexity level of English words in a particular context using regression techniques. Our best submission to the Lexical Complexity Prediction (LCP) shared task was ranked 3rd out of 48 systems for sub-task 1 and achieved Pearson correlation coefficients of 0.779 and 0.809 for single words and multi-word expressions respectively. The conclusion is that a combination of lexical, contextual and semantic features can still produce strong baselines when compared against human judgement.



References used
https://aclanthology.org/
rate research

Read More

This paper describes team LCP-RIT's submission to the SemEval-2021 Task 1: Lexical Complexity Prediction (LCP). The task organizers provided participants with an augmented version of CompLex (Shardlow et al., 2020), an English multi-domain dataset in which words in context were annotated with respect to their complexity using a five point Likert scale. Our system uses logistic regression and a wide range of linguistic features (e.g. psycholinguistic features, n-grams, word frequency, POS tags) to predict the complexity of single words in this dataset. We analyze the impact of different linguistic features on the classification performance and we evaluate the results in terms of mean absolute error, mean squared error, Pearson correlation, and Spearman correlation.
In this paper, we propose a method of fusing sentence information and word frequency information for the SemEval 2021 Task 1-Lexical Complexity Prediction (LCP) shared task. In our system, the sentence information comes from the RoBERTa model, and th e word frequency information comes from the Tf-Idf algorithm. Use Inception block as a shared layer to learn sentence and word frequency information We described the implementation of our best system and discussed our methods and experiments in the task. The shared task is divided into two sub-tasks. The goal of the two sub-tasks is to predict the complexity of a predetermined word. The shared task is divided into two subtasks. The goal of the two subtasks is to predict the complexity of a predetermined word. The evaluation index of the task is the Pearson correlation coefficient. Our best performance system has Pearson correlation coefficients of 0.7434 and 0.8000 in the single-token subtask test set and the multi-token subtask test set, respectively.
This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in wh ich words and multi-word expressions (MWEs) were annotated with respect to their complexity using a five point Likert scale. SemEval-2021 Task 1 featured two Sub-tasks: Sub-task 1 focused on single words and Sub-task 2 focused on MWEs. The competition attracted 198 teams in total, of which 54 teams submitted official runs on the test data to Sub-task 1 and 37 to Sub-task 2.
In this contribution, we describe the system presented by the PolyU CBS-Comp Team at the Task 1 of SemEval 2021, where the goal was the estimation of the complexity of words in a given sentence context. Our top system, based on a combination of lexic al, syntactic, word embeddings and Transformers-derived features and on a Gradient Boosting Regressor, achieves a top correlation score of 0.754 on the subtask 1 for single words and 0.659 on the subtask 2 for multiword expressions.
This paper describes a system submitted by team BigGreen to LCP 2021 for predicting the lexical complexity of English words in a given context. We assemble a feature engineering-based model with a deep neural network model founded on BERT. While BERT itself performs competitively, our feature engineering-based model helps in extreme cases, eg. separating instances of easy and neutral difficulty. Our handcrafted features comprise a breadth of lexical, semantic, syntactic, and novel phonological measures. Visualizations of BERT attention maps offer insight into potential features that Transformers models may learn when fine-tuned for lexical complexity prediction. Our ensembled predictions score reasonably well for the single word subtask, and we demonstrate how they can be harnessed to perform well on the multi word expression subtask too.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا